
© Informatica. Proprietary and Confidential.

Elastic Heterogeneous Cluster and
Heterogeneity-Aware Job Configuration

3rd October 2022

•Yongqin Xiao

•Atam Prakash Agrawal

2 © Informatica. Proprietary and Confidential.22222

• Context - Cloud Data Integration Elastic (CDI-E)

• Motivation for heterogeneous elastic computing

• Proposed solution

• Auto-detection of preferred Instance type

• Auto healing on instance type selection

• Effective spark container scheduling & cluster autoscaling

• Impact

Agenda

© Informatica. Proprietary and Confidential.33

Informatica - Intelligent Cloud Data Management

Streaming

On-Premises

IoT Machine
Data

SocialLog files

Apps

Mobile

DatabasesApplication
Servers

Documents

Mainframe

Data
Warehouse

SaaS

ERP DRM

Cloud Data Lake

Landing
Zone

Data
Enrichment

Enterprise
Zone

Data Integration and Quality3

Cloud Storage

Spark Processing

Stream Storage
Stream
Processing

6

D
a

ta
 In

te
g

ra
ti

o
n

D

a
ta

 P
ro

vi
si

o
n

in
g

4

Cloud Data
Warehouse

Data Science/AI

D
a

ta
 P

ro
vi

si
o

n
in

g

5

Real-time
Analytics

Enterprise
Analytics

Line of Business/
Self-Service

Analytics

Data
Scientist

Data
Engineer

Line of
Business

Data
Analyst

Business
User

Discovery Lineage Glossary
Data Catalog and
Data Governance

1

D
a

ta
 In

g
e

st
io

n
 a

n
d

 R
e

p
lic

a
ti

o
n

2

Prepare
and Build

Deploy and
Consume

Monitor
and Alert

Amazon
Kinesis

Azure
Event Hub

© Informatica. Proprietary and Confidential.44

CDI-Elastic Features

❑ Elastic Cloud infrastructure to process
any data volumes and concurrency
within your cloud subscription

❑ Support for modern use cases through
structured, semi-structured data support,
hierarchy processing, MLOps

❑ Developer productivity and Operational
simplicity through dynamic mappings,
Incremental File loader, Auto tuning and
Auto Scaling.

❑ Up to 90% savings on Cloud Infrastructure
using infa auto scaler and spot instances

❑ Up to 70% job perf improvement using
Auto-Tuning

❑ Up to 5 times performance boost and 72%
TCO savings running CDI-Elastic on
NVIDIA GPU Support for spot

instances, arm64,
GPU’s

Elastic infrastructure to
match your data

processing needs

Support for all
CDW/DL use

cases

Support for
MLOps, Python

Integration

Be more
productive with

auto-scaling,
auto-tuning

When to use Advanced Serverless

No code design experience

Informatica Intelligent Cloud Services

Elastic Cluster

Deployed to your
Cloud network

Elastic Cluster

When to use CDI-Elastic

Cloud Data Integration Elastic – CDI-E
Build and maintain high performance data pipelines with Elastic infrastructure to match data
processing needs.

5 © Informatica. Proprietary and Confidential.55555

CDI-E Data Integration Job - A SQL like ETL job

CSV
(S)

Expression
(Tx)

Joiner
(Tx)

DB Table
(S)

Router
(Tx)

S3 connection

Avro
(T)

Parquet
(T)

ORC
(T)

DB connection S3 connection

S3 connection

S3 connection

Legend

• S – Source

• Tx – Transformation

• T – Target

6 © Informatica. Proprietary and Confidential.66666

CDI-E Architecture

7 © Informatica. Proprietary and Confidential.7

• A fully managed ephemeral Kubernetes Cluster.

• Shared by different users to run different types of
jobs.

• Auto-scales up or down based on workload, within the
resource boundaries user specifies.

• Executes spark job using native spark functionalities
and a rich set of Informatica plugins.

• Spark job runs in cluster mode. Each is isolated by
default.

• CLAIRE® - Informatica's AI engine, optimizes and
auto-tunes the execution parameter for a spark job.

CDI-E Elastic Compute Cluster

AI-powered auto tuning

Auto scaling

Kubernetes

Spark

No Code

© Informatica. Proprietary and Confidential.88

Motivation for Heterogeneous cluster

• The compute cluster serves a large variety of spark jobs with different
resource requirements.

• Cloud provider offers a wide range of node instance types, with different
resources and costs.

• Each instance type fits a different kind of job in terms of performance and
cost.

• Traditional elastic cluster supports homogeneous worker nodes.

• No one-size-fits-all solution for choosing the instance type for a cluster.

• Users must configure different clusters and carefully assign jobs to the
best fitting cluster.

© Informatica. Proprietary and Confidential.99

CPU Node vs. GPU Node

• RAPIDS spark accelerator
requires NVIDIA GPU

• General 1:4 vCPU to memory ratio

• Price: 1 GPU ~ 4 vCPU

• Job performance vs. cost

-Cost - m5d : g4dn = 1 : 1.67

- Job Time (CPU:GPU) -> overall cost

• = 1.67 : 1 –> CPU cost same as GPU

• > 1.67 : 1 –> save cost with GPU

• < 1.67 : 1 –> save cost with CPU

Instance Type GPU vCPU MEM(G) Network
(Gbps)

Price
($)

g4dn.2xlarge 1 8 32 25 0.752

g4dn.12xlarge 4 48 192 50 3.912

m5d.2xlarge 0 8 32 Up to 10 0.452

m5d.12xlarge 0 48 192 10 2.712

© Informatica. Proprietary and Confidential.1010

Job Performance on CPU Cluster vs. GPU Cluster

~ 0.9X – 3.3X perf gain on GPU over CPU

© Informatica. Proprietary and Confidential.1111

Limitation of GPU Cluster

• Resource on GPU node: GPU node usually has GPU: CPU ratio from 1:8 to
1:64.

• All jobs are configured to request a GPU by default.

• Spark Executor Sizing: Only 1 executor can be created on a 1-GPU node
because a single GPU can not be shared by multiple executors.

• GPU-supported Spark job - These jobs will not utilize enough CPU Resources.
CPU Resources will be wasted.

• Non-GPU supported Spark job - GPU resources will be wasted.

• Requires user manual tuning at the job level to reduce such waste.

© Informatica. Proprietary and Confidential.1212

Proposed Solution – Heterogeneous Cluster and
Heterogeneity-Aware Job Configuration

• A heterogeneous cluster environment, with mixed instance types for worker
nodes, such as CPU node and GPU node.

• Auto decides the best suitable instance type for a job based on its
computation and resource characteristics.

• Auto improves the above decision based on historical job execution
statistics, for the next run.

• Effective k8s pod scheduling of the job to achieve better resource utilization
within the cluster.

• Auto scales nodes of each type based on demands

13 © Informatica. Proprietary and Confidential.1313131313

Heterogeneous Cluster
Sample cluster

• Mix of CPU, ARM-based CPU, and
GPU nodes.

• GPU job runs on GPU node.

• CPU job favors either CPU node or
ARM-based CPU node & Unused
cores of GPU node.

• Nodes of the same type grouped
together.

• Each node groups scale separately
on demands.

Worker
Node

Group 1

Master
Worker
Node

Group 2

Worker
Node

Group 3

(x86_64 node type)

(ARM64 node type)

(GPU node type)

© Informatica. Proprietary and Confidential.1414

Computation Units in Data Integration Job

CSV
(S)

Expression
(Tx)

Joiner
(Tx)

DB Table
(S)

Router
(Tx)

S3 connection

Avro
(T)

Parquet
(T)

ORC
(T)

DB connection S3 connection

S3 connection

S3 connection

© Informatica. Proprietary and Confidential.1515

Characteristic of Each Computation Units

• Memory intensive: parquet data connector, hierarchical data processing
transformation, INFA transformations configured with large memory cache, …

• IO intensive: NFS-based file connector, transformations with cache overflow
to disk, transformations requiring data shuffle, …

• Network intensive: transformations requiring data shuffle, data connectors
for various cloud storage, …

• CPU intensive: expressions with heavy mathematical calculation, hierarchical
data parser, Data Quality, and Data Masking transformations, …

• GPU suitable: expression, large sorter, file parser, …

• ARM64 Support: all except certain native-TPL dependent transformations

© Informatica. Proprietary and Confidential.1616

Other Characteristics to Consider

• Some connectors and transformations are genuinely slower than others due
to external resource restrictions (e.g. concurrent DB connections) or their
complexity

• Data cardinality – GPU is not suitable for small data

• Computation complexity of INFA-specific transformations

© Informatica. Proprietary and Confidential.1717

Auto-detection of Preferred Instance Type

• Called as node type preference
matrix.

• Happens at Data Integration job
compilation time - when translating
DI job to Spark job in Scala

• A handler of the computation unit
assigns one score to each node
type.

Data-pipeline/

Worker node
type

Computati
on Unit1

Computati
on Unit2

Computati
on Unit3

…
…

Computati
on UnitN

X86_64 s11 s12 s13 …
…

s1N

ARM64 s21 s22 s23 …
…

s2N

GPU s31 s32 s33 …
…

s3N

© Informatica. Proprietary and Confidential.1818

Static score computation

• If a computation unit can’t run
on a certain instance type at all,
the score will be negative
infinity.

• If a computation unit doesn’t
support accelerated computing
resources, the score is 0.

• The higher the score, the more
preference for the node type.

• ARM64 node types are used as
a cost-saving model for the low-
priority job.

Computational Unit

Accelerated
computing (GPU)

Supported F(GPU char)

Unsupported Score = 0

CPU (AMD64)

Memory intensive
F(Memory char)

I/O Intensive F(I/O char)

CPU intensive F(CPU char)

CPU (ARM64)

Supported F(Job priority)

Unsupported
Score = negative
max integer value

© Informatica. Proprietary and Confidential.1919

Overall Score for the Data Integration Job

• Final score of the data integration job for each node type:

X86_64 score = (w1*s11 + w2*s12 + w3*s13 +……….. + wn*s1N)/N

ARM64 score = (w1*s21 + w2*s22 + w3*s23 +……….. + wn*s2N)/N

GPU score = (w1*s31 + w2*s32 + w3*s33 +……….. + wn*s3N)/N

• The final score represents the node selection preference of the job.

• We call such scores static scores.

• A score-based job scheduler will schedule the job’s executors to its preferred
type of worker nodes as much as possible.

20 © Informatica. Proprietary and Confidential.2020202020

Instance Type Preference Score Assignment Summary

A handler of the computation unit assigns one score to each node type.

Score is defined based on the resource consumption nature and resource
configuration of a computation unit.

Other factors like data cardinality and complexity of computation unit also weigh in.

AI training could be introduced to compute the weight of each computational unit.

© Informatica. Proprietary and Confidential.2121

Auto Heal the Static Score

• Spark’s physical plan contains jobs, execution stages in
each job, and phases in each stage. Each stage is
scheduled separately to spark executors.

• Physical plan is available as part of Spark monitoring
data.

• Spark monitoring data also contains execution
statistics at the job, stage, or even phase level,
including execution time, number of partitions, data
(bytes and rows) being processed, amount of shuffle
data, which hardware being used (e.g. CPU vs. GPU) at
each phase, etc.

• Evaluated static score is adjusted based on this
monitoring information.

• The adjusted score is called the dynamic score.

© Informatica. Proprietary and Confidential.2222

Spark Monitoring and Statistics Report

• Details of executor task metrics can be found at the
following links-

https://spark.apache.org/docs/latest/monitoring.html#executor-metrics
https://spark.apache.org/docs/latest/monitoring.html#executor-task-metrics

• Spark qualification tool uses these stats to analyze
Spark events generated from CPU-based Spark
applications to help quantify the expected acceleration
of migrating a Spark application or query to GPU.

23 © Informatica. Proprietary and Confidential.23

• Both dynamic and static scores persisted.

• The dynamic score is averaged across runs.

• The latest dynamic score is considered for the next run of the mapping.

• For a new product release, the new static score may overwrite an earlier
dynamic score.

• If the data Integration job is modified, persisted scores will be erased.

• Allow users to explicitly choose GPU for better performance even if the overall
cost might be higher.

Persist and Leverage Dynamic Score

© Informatica. Proprietary and Confidential.2424

Kubernetes Scheduling
K8s Node Affinity Feature

© Informatica. Proprietary and Confidential.2525

Kubernetes Scheduling
Scheduling Spark Driver/Executor Containers

Cluster is started with a
minimal set of general-purpose
CPU nodes.

Spark driver will prefer general-
purpose CPU node.

GPU executors are scheduled to
GPU node only

CPU executor has higher node
affinity for CPU node than GPU
and ARM64 node. Schedule
CPU containers to unused CPU
core of GPU node.

The scheduling could also depend on
application priority or user preference.

The low-priority job will run on cheaper
instances like an ARM64 node.

26 © Informatica. Proprietary and Confidential.26

• User defines max node count N for the heterogeneous cluster.

• Default quota for different node groups

-Max GPU node count: 70% of N.

-Max CPU node count: 50% of N.

-Max ARM64 node count: 50% of N.

• Node group of each instance type scales separately based on needs.

• Cluster auto scaler controls the overall node count.

• Schedule CPU containers to GPU node only if there are already some GPU
containers running on the node – to allow GPU nodes to scale down.

Kubernetes Cluster Auto Scaling

© Informatica. Proprietary and Confidential.2727

CPU (x86_64)

CPU (x86_64)

CPU (arm64)

CPU (arm64)

GPU

GPU

GPU

Submit job(s)

Customer Data

U
s

e
r

In
te

rf
a

c
e

Collect job status

Collect spark stats like spark
plan info for auto-
tuning/healing the score

K8s Scheduling

Customer VPC

Heterogeneous Cluster with
CPU, ARM64, and GPU node

DI Job

Informatica VPC

Design Flow

Repository
server

Persist
DI jobs

Design layer

Job
Compiler

Spark jobs

Send spark execution stats to
analyze with physical plan info

Persist the
score for DI job

Static score
calculation and

assignment

Job
Translator

Scala code
generation

Job logical processing layer Runtime layer

Job
Executor

Auto Scaling

S3

K8s Cluster

28 © Informatica. Proprietary and Confidential.28

Benefits after Solution

• Simple cluster type configuration: hetero vs. homo.

• No worry about quota among node groups by default.

• No need to manual configure GPU vs. CPU for job.

• Job properties are auto adjusted based on GPU vs. CPU – partition
size, memory, cpu.

Simplicity and
intelligence

• Different types of jobs can share one cluster.

• Up to 5x performance improvement for GPU suitable job.

• Up to 72% Significant cost saving.

Performance
and cost

Q & A

Thank You

