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LinkedIn’s Vision

Create economic opportunity
for every member of the global workforce

850M
Members 

(July 2022)

59M
Companies
(Apr 2022)

52M/week
Job Seekers
(Jun 2022)

39K
Skills

(July 2022)

128K
Schools

(July 2022)



Hadoop at LinkedIn

Powers:
● Data Analytics

○ Economic graphs
○ Data driven decisions

● AI
○ People you may know
○ Jobs you may be interested in
○ Courses you may be interested in
○ Feed recommendations
○ …



Hadoop YARN

HDFS
Distributed File Storage

YARN
Resource Management

Batch OthersStream
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Hadoop at LinkedIn

LinkedIn’s largest cluster:
● 10x growth over 4 years
● 15k nodes
● 3PB memory
● 1 exabyte data
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Optimizing ResourceManager: Part 1

● Grew our primary cluster to 6000 nodes
● Workload grew to 300k applications/day
● Result: allocation speed dropped from 500 

containers/sec to 50 containers/sec 



Optimizing ResourceManager: Part 1

● Caused by inefficiencies in YARN partitioning
● Partition 2 node heartbeats to RM -> N failed 

attempts to schedule partition 1 applications 
on this node

● NMs are heartbeating every second, so each 
heartbeat will incur failed attempts

Pending apps:

● Partition1_1
● Partition1_2
● …
● Partition1_N
● Partition2_1
● Partition2_2
● …
● Partition2_M

Partition 1 Partition 2

ResourceManager

NodeManager NodeManager



Optimizing ResourceManager: Part 1

● Solution: If partition 1 node 
heartbeats, only look at Partition1_1, 
Partition1_2, …, vice versa for 
partition2 nodes

● Identical scheduling behavior to 
having separate physical clusters, 
with the flexibility of having a single 
cluster

Pending apps:

● Partition1_1
● Partition1_2
● …
● Partition1_N
● Partition2_1
● Partition2_2
● …
● Partition2_M

RM

Partition1 
NM

Partition1 
NM

Partition2 
NM

Partition2 
NM



Optimizing ResourceManager: Part 2

● Overall container throughput recovered 
to 600 containers/sec

● Some queues were ~200 containers/sec, 
others 0 containers/sec

● Issue: overall cluster was running fine but 
some queues were running in degraded 
state (starvation)

Queue A

Queue B



Optimizing ResourceManager: Part 2

● Issue: Large queue A < 15% capacity, 
small queue B > 15% capacity

● Short-lived queue A containers means 
high churn, scheduler cannot allocate 
containers faster than queue A releases 
=> queue A remains < 15%

● Queues allocated based on capacity
○ Queue B never receives resources

● Fix: Change queue ordering policy to 
round robin

Queue A

Queue B



Replaying Scheduler Activity At Scale

● Test clusters don’t generate 
enough load

● Attaching profilers, enabling 
debug logging, etc. drastically 
impact scheduler 
performance

● How to test changes in 
scheduling logic under stress?



DynoYARN: YARN Scale Testing Tool

● Testing tool developed at LinkedIn to simulate large clusters and cluster 
load

● On-demand YARN cluster with small hardware footprint
● Simulate YARN daemons and YARN applications, without running any 

actual compute workload



Host NMHost NM

DynoYARN: YARN Scale Testing Tool

Fake application

X containers
<Y GB, Z vcores>

Fake RM

Fake NM Fake NMFake application

A containers
<B GB, C vcores>



DynoYARN: YARN Scale Testing Tool

● Fake NodeManager runs in a container: 50 containers/host = 
50 NM/host
○ 200 node physical cluster can simulate a 10k node cluster

● Take traces from production cluster, replay them on 
DynoYARN cluster

● Scale up production workload by 1.5x, 2x, gather metrics



DynoYARN: YARN Scale Testing Tool

● Compare metrics with 
baseline and scaled 
production traces

● Forecast application 
delays with scaled traces



DynoYARN: Open Source

● Open sourced at 
http://github.com/linkedin/dynoyarn 

http://github.com/linkedin/dynoyarn
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Horizontal Scaling: Robin

● YARN cannot scale indefinitely
● Fragment large YARN cluster 

into multiple smaller YARN 
clusters

● Abstract out clusters on client 
side so client still sees a single 
cluster

Job 
submission

Cluster 1 Cluster 2

Job Routing



Robin

● Split 10k node cluster into 
two 5k node clusters

● Transparently route jobs 
based on cluster load



Rack /e.f.g.hRack /a.b.c.d

NM

Robin: Rack Striping

● How to split NodeManagers 
between clusters?
○ Moving full racks to cluster 2 

may result in loss of data 
locality (three replicas may 
be on cluster 1)

● Split each rack’s nodes 
across compute clusters to 
guarantee rack locality

Cluster 1 
RM

Cluster 2 
RM

NM NM NM NM NM NM NM



Lessons Learned

● Follow a scientific approach to 
testing changes

● Know your system
○ Identify meaningful metrics
○ Come up with hypotheses

● Use tools to analyze system 
performance
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