
Scaling LinkedIn’s Hadoop 
YARN cluster beyond 

10,000 nodes
By Keqiu Hu, Jonathan Hung



Speakers

Keqiu Hu Jonathan Hung



1

2

3

4

Agenda

Hadoop at LinkedIn

Optimizing YARN

Scaling Horizontally

Q&A 



LinkedIn’s Vision

Create economic opportunity
for every member of the global workforce

850M
Members 

(July 2022)

59M
Companies
(Apr 2022)

52M/week
Job Seekers
(Jun 2022)

39K
Skills

(July 2022)

128K
Schools

(July 2022)



Hadoop at LinkedIn

Powers:
● Data Analytics

○ Economic graphs
○ Data driven decisions

● AI
○ People you may know
○ Jobs you may be interested in
○ Courses you may be interested in
○ Feed recommendations
○ …



Hadoop YARN

HDFS
Distributed File Storage

YARN
Resource Management

Batch OthersStream



YARN Architecture (simplified)

Submit Jobs Application

...

Resource Allocation

Resource Request

NodeManager
(worker) NodeManager

(worker)
NodeManager

(worker)
NodeManager

(worker)

Resource Manager
(Scheduler)

Hea
rtb

ea
t



YARN Architecture (simplified)

Submit Jobs Application

...

Resource Allocation

Resource Request

NodeManager
(worker) NodeManager

(worker)
NodeManager

(worker)
NodeManager

(worker)

Resource Manager
(Scheduler)

Hea
rtb

ea
t



Hadoop at LinkedIn

LinkedIn’s largest cluster:
● 10x growth over 4 years
● 15k nodes
● 3PB memory
● 1 exabyte data



1

2

3

4

Agenda

Hadoop at LinkedIn

Optimizing YARN

Scaling Horizontally

Q&A 



Optimizing ResourceManager: Part 1

● Grew our primary cluster to 6000 nodes
● Workload grew to 300k applications/day
● Result: allocation speed dropped from 500 

containers/sec to 50 containers/sec 



Optimizing ResourceManager: Part 1

● Caused by inefficiencies in YARN partitioning
● Partition 2 node heartbeats to RM -> N failed 

attempts to schedule partition 1 applications 
on this node

● NMs are heartbeating every second, so each 
heartbeat will incur failed attempts

Pending apps:

● Partition1_1
● Partition1_2
● …
● Partition1_N
● Partition2_1
● Partition2_2
● …
● Partition2_M

Partition 1 Partition 2

ResourceManager

NodeManager NodeManager



Optimizing ResourceManager: Part 1

● Solution: If partition 1 node 
heartbeats, only look at Partition1_1, 
Partition1_2, …, vice versa for 
partition2 nodes

● Identical scheduling behavior to 
having separate physical clusters, 
with the flexibility of having a single 
cluster

Pending apps:

● Partition1_1
● Partition1_2
● …
● Partition1_N
● Partition2_1
● Partition2_2
● …
● Partition2_M

RM

Partition1 
NM

Partition1 
NM

Partition2 
NM

Partition2 
NM



Optimizing ResourceManager: Part 2

● Overall container throughput recovered 
to 600 containers/sec

● Some queues were ~200 containers/sec, 
others 0 containers/sec

● Issue: overall cluster was running fine but 
some queues were running in degraded 
state (starvation)

Queue A

Queue B



Optimizing ResourceManager: Part 2

● Issue: Large queue A < 15% capacity, 
small queue B > 15% capacity

● Short-lived queue A containers means 
high churn, scheduler cannot allocate 
containers faster than queue A releases 
=> queue A remains < 15%

● Queues allocated based on capacity
○ Queue B never receives resources

● Fix: Change queue ordering policy to 
round robin

Queue A

Queue B



Replaying Scheduler Activity At Scale

● Test clusters don’t generate 
enough load

● Attaching profilers, enabling 
debug logging, etc. drastically 
impact scheduler 
performance

● How to test changes in 
scheduling logic under stress?



DynoYARN: YARN Scale Testing Tool

● Testing tool developed at LinkedIn to simulate large clusters and cluster 
load

● On-demand YARN cluster with small hardware footprint
● Simulate YARN daemons and YARN applications, without running any 

actual compute workload



Host NMHost NM

DynoYARN: YARN Scale Testing Tool

Fake application

X containers
<Y GB, Z vcores>

Fake RM

Fake NM Fake NMFake application

A containers
<B GB, C vcores>



DynoYARN: YARN Scale Testing Tool

● Fake NodeManager runs in a container: 50 containers/host = 
50 NM/host
○ 200 node physical cluster can simulate a 10k node cluster

● Take traces from production cluster, replay them on 
DynoYARN cluster

● Scale up production workload by 1.5x, 2x, gather metrics



DynoYARN: YARN Scale Testing Tool

● Compare metrics with 
baseline and scaled 
production traces

● Forecast application 
delays with scaled traces



DynoYARN: Open Source

● Open sourced at 
http://github.com/linkedin/dynoyarn 

http://github.com/linkedin/dynoyarn


1

2

3

4

Agenda

Hadoop at LinkedIn

Optimizing YARN

Scaling Horizontally

Q&A 



Horizontal Scaling: Robin

● YARN cannot scale indefinitely
● Fragment large YARN cluster 

into multiple smaller YARN 
clusters

● Abstract out clusters on client 
side so client still sees a single 
cluster

Job 
submission

Cluster 1 Cluster 2

Job Routing



Robin

● Split 10k node cluster into 
two 5k node clusters

● Transparently route jobs 
based on cluster load



Rack /e.f.g.hRack /a.b.c.d

NM

Robin: Rack Striping

● How to split NodeManagers 
between clusters?
○ Moving full racks to cluster 2 

may result in loss of data 
locality (three replicas may 
be on cluster 1)

● Split each rack’s nodes 
across compute clusters to 
guarantee rack locality

Cluster 1 
RM

Cluster 2 
RM

NM NM NM NM NM NM NM



Lessons Learned

● Follow a scientific approach to 
testing changes

● Know your system
○ Identify meaningful metrics
○ Come up with hypotheses

● Use tools to analyze system 
performance



1

2

3

4

Agenda

Hadoop at LinkedIn

Optimizing YARN

Scaling Horizontally

Q&A 


