
Git for Data Lakes

How lakeFS Scales Data Versioning to Billions of Objects

Amit Kesarwani
Director of Solution Engineering





👋

github.com/kesarwam

@AmitKesarwani

Amit Kesarwani: Solutions Architect

github.com/treeverse/lakeFS

@lakeFS



github.com/ozkatz

@ozkatz100

https://dictionary.cambridge.org/dictionary/english/axolotl

https://dictionary.cambridge.org/dictionary/english/axolotl


What if we had Git?
But, you know, that scales to S3 sizes?

5

+ = 



What if we had Git?
But, you know, that scales to S3 sizes?

6

+ = 



Cheap, CoW Branching

Fast

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

Wishlist
Sometimes referred to as “requirements”

7

= ✓
✓

✓
✓



OK, so how do you 
scale the Git model 
to billions of 
objects? 🔍



Attempt #1

Data (objects)

9

Metadata (pointers to objects)

Let’s use Git!



Attempt #1

Data (objects)

10

Metadata (pointers to objects)

Let’s use Git!



Cheap, CoW branching

Fast

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

Attempt #1
Let’s use Git!

Data (objects)

11

Metadata (pointers to objects)

✓

✓

✗
✗



Attempt #2
Let’s use a database!

Data (objects)

12

Metadata (pointers to objects)



Attempt #2
Let’s use a database!

13



Attempt #2
Let’s use a database!

14

😨



Attempt #2
Let’s use a database!

15

Cost Based Optimization

● Mostly based on table statistics

● Won’t always use the index

● Bad when growing/shrinking 1000x 



Attempt #2
Let’s use a database!

Data (objects)

16

Metadata (pointers to objects)

Cheap, CoW branching

Fast

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

Predictable behavior

Easy to extend and maintain

✓

✓

✗
✗

✗
✗



Attempt #3
Let’s not use a database!*

Metadata (pointers to objects)
+

Data (objects)

17

Metadata (only refs)

* Almost.



Attempt #3
Let’s not use a database!

Metadata (pointers to objects)

18

Metadata (refs only)

Data (Objects)



Attempt #3
Let’s not use a database!

Metadata (pointers to objects)

19

Metadata (refs only)

Data (Objects) 🔍



Attempt #3
Let’s not use a database!

20

Ranges

● Key/value pairs

● Lexicographically sorted paths

● Balancing throughput and latency:

1-8 MB in size

● Immutable, hash addressed



Attempt #3
Let’s not use a database!

Metadata (pointers to objects)

21

Metadata (refs only)

Data (Objects)

🔍



Attempt #3
Let’s not use a database!

22

Metaranges

● Are ranges!

● That point to ranges!

● These ranges do not overlap



Attempt #3
Let’s not use a database!

23

Commits

● Are pointers to metaranges

● Space = O(diff)



Attempt #3
Let’s not use a database!

24

Diffing and Merging

● Are efficient! 

● Time = O(diff)



Attempt #3
Let’s not use a database!

Metadata (pointers to objects)
+

Data (objects)

25

Metadata (only refs)

Cheap, CoW branching

Fast…? 🤷

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

✓

✓

✓
✓



Attempt #3
Let’s not use a database!

Metadata (pointers to objects)
+

Data (objects)

26

Metadata (only refs)

Cheap, CoW branching

Fast 😢

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

✓

✓

✗
✓



Attempt #3

27

Let’s not use a database!

https://github.com/dvassallo/s3-benchmark

Object store != Key Value Store

● TTFB is high (tens of ms)

● Gets worse at higher percentiles

https://github.com/dvassallo/s3-benchmark


Attempt #3.5
Caching!

Metadata (pointers to objects)
+

Data (objects)

28

Metadata (only refs)

Cheap, CoW branching

Fast!

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

✓

✓

✓

🤜

🧺

✓



“There are only two hard things in Computer 
Science: cache invalidation and naming things.”

— Phil Karlton



Attempt #3.5
Caching

30

Ranges

● Key/value pairs

● Lexicographically sorted paths

● Balancing throughput and latency:

1-8 MB in size

● Immutable, hash addressed

So no invalidation necessary



Attempt #3.5
Caching!

Metadata (pointers to objects)
+

Data (objects)

31

Metadata (only refs)

Cheap, CoW branching

Fast!

Efficient diffing/merging

Intuitive Familiar branching
committing and merging semantics

✓

✓

✓
✓

🤜

🧺



Demo Time

🤞



Demo: Use Case
Cleaning the internet with lakeFS and Spark

33

https://commoncrawl.org/

h1ps://www.kaggle.com/datasets/tarun6warihp/phishing-site-urls

Delete phishing sites from Common Crawl's data

https://commoncrawl.org/
https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls


What can we learn from this?
Some key points

● Define constraints early

● You cannot predict your next bottleneck

● Choosing a correct data model is 80% of the work

34





👩🚒
🚒

💦



Learn More

https://lakeFS.io/

github.com/treeverse/lakeFS

https://lakefs.io/community



Thanks!

amit.kesarwani@treeverse.io

🙏

Director of Solution Engineering


