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Agenda
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● How an Ozone upgrade works

● Ozone’s upgrade compatibility guarantees

● Managing disk compatibility

● Managing client compatibility



Introduction to Ozone

● Distributed storage system

● Strongly consistent

● Supports HDFS and S3 protocols

● Improvements from HDFS:

○ Metadata stored in RocksDB, only working set is kept in memory

■ Scales to billions of objects

○ Decoupled namespace and block space

■ Handles many small files



Ozone Architecture



Ozone’s Upgrade Guarantees

● Non-rolling upgrades
○ All server side components are stopped in the old version, then started in the new version

● Downgrade support
○ Also non-rolling

○ Data written in newer version should still be readable

● Client cross compatibility
○ All clients released since Ozone 1.0.0 (GA) should work with all server versions released since 

Ozone 1.0.0

○ An Ozone server may see clients both older and newer than itself



Visualizing an Ozone Upgrade

Data written by 1.2.0 should 
still be readable by 1.1.0



What Affects Compatibility?

● New Ozone features in 2022:

Feature Affects Disk 
Layout?

Affects Client 
Protocol?

1 RocksDB per Datanode 
Volume ✓

S3 Gateway Persistent 
Connections ✓

S3 Multi-Tenancy ✓

Bucket Layouts ✓

Erasure Coding (EC) ✓ ✓



Disk Compatibility

Managing upgrades and downgrades across features with 
incompatible disk changes



Managing Disk Compatibility

● Finalization

○ Concept borrowed from HDFS

● Pre-Finalized: New features cannot be used, but downgrade is allowed.

● Finalized: New features can be used, but downgrade is not allowed.



Layout 
Versions

State New Layout Features 
Usable?

Downgrade 
Allowed?

MLV < SLV Pre-finalized ✘ ✓

MLV == SLV Finalized ✓ ✘

MLV > SLV Error, startup 
fails

N/A N/A

Implementing Finalization
● Layout Feature: Feature with disk compatibility concerns that is assigned a 

layout version

● Software Layout Version (SLV): Hard coded layout version

● Metadata Layout Version (MLV): Layout version written to disk



Ozone Upgrade/Downgrade Flow



Representing Layout Features

public enum OMLayoutFeature implements LayoutFeature {

  //////////////////////////////  //////////////////////////////  

  INITIAL_VERSION(0, "Initial Layout Version"),

  ERASURE_CODED_STORAGE_SUPPORT(1, "Ozone version with built in support for"

      + " Erasure Coded block data storage."),

  BUCKET_LAYOUT_SUPPORT(2, "Ozone version supporting bucket " +

      "layouts and introducing the FILE_SYSTEM_OPTIMIZED and OBJECT_STORE " +

      "bucket layout types."),

  MULTITENANCY_SCHEMA(3, "Multi-Tenancy Schema");

  //////////////////////////////  //////////////////////////////

  ...

}



Developer Requirements

➔ Block incompatible requests while pre-finalized

Without a dedicated framework…

✘ No clear guidance for devs to handle upgrade concerns

✘ Every feature’s upgrade concerns are mixed with unrelated code

✘ Difficult to locate code that handles upgrade concerns

✘ Higher chance of error if devs are not familiar with upgrade/downgrade process

➔ Separation of Concerns: Separate compatibility handling from other business logic



Blocking a New Request While Pre-Finalized

✓ Easier for devs to use
✓ Upgrade logic separated from business logic

@DisallowedUntilLayoutVersion(MULTITENANCY_SCHEMA)

public OMRequest preExecute(OzoneManager ozoneManager) throws IOException {

  ...

}



Blocking a New Variation of an Existing Request While 
Pre-Finalized

  @RequestFeatureValidator(

      conditions = ValidationCondition.CLUSTER_NEEDS_FINALIZATION,

      processingPhase = RequestProcessingPhase.PRE_PROCESS,

      requestType = Type.CreateBucket

  )

  public static OMRequest disallowCreateBucketWithECReplicationConfig(

      OMRequest req, ValidationContext ctx) throws OMException {

    ...

  }

✓ Easier for devs to use
✓ Upgrade logic separated from business logic

➔ Example: Only block bucket creation with EC replication type



Client Compatibility

Managing client/server protocol changes while maintaining 
cross compatibility



Client Compatibility Requirements

● Cross compatibility between all clients and servers since Ozone 1.0.0 (GA)

● Client/server protocol should function at the level of the oldest component

● Incompatible requests fail cleanly



Client Compatibility Implementation

● Each component has:

○ Its own version

○ The latest versions of other components it knows about

● Components can choose actions based on the versions they receive.

● The newest component must handle compatibility concerns



Client and Server are the Same Version

$ ozone sh bucket create vol/ecbucket 
--type EC --replication rs-3-2-1024k



Client is Newer Than Server

● Client compares the server’s version with its known server versions

● Client should block user requests the server will not understand

● Prevents unnecessary requests resulting in messy protocol errors being 
returned to the user



New client’s 
known server 

versions

public enum OzoneManagerVersion implements ComponentVersion {

  //////////////////////////////  //////////////////////////////

  DEFAULT_VERSION(0, "Initial version"),

  S3G_PERSISTENT_CONNECTIONS(1,

      "New S3G persistent connection support is present in OM."),

  ERASURE_CODED_STORAGE_SUPPORT(2, "OzoneManager version that supports"

      + "ECReplicationConfig"),

  FUTURE_VERSION(-1, "Used internally in the client when the server side is "

      + " newer and an unknown server version has arrived to the client.");

  //////////////////////////////  //////////////////////////////

  ...

}

public enum OzoneManagerVersion implements ComponentVersion {

  //////////////////////////////  //////////////////////////////

  DEFAULT_VERSION(0, "Initial version"),

  FUTURE_VERSION(-1, "Used internally in the client when the server side is "

      + " newer and an unknown server version has arrived to the client.");

  //////////////////////////////  //////////////////////////////

  ...

}

Old server’s 
version



Client is Newer Than Server

$ ozone sh bucket create vol/ecbucket 
--type EC --replication rs-3-2-1024k

Can not set the default replication of 
the bucket to Erasure Coded replication, 
as OzoneManager does not support Erasure 
Coded replication.



Server is Newer than Client

● Server compares the client’s version with its known client versions

● Server should block the client from reading data it cannot understand

○ This could happen if the data was written by a new client using a new format like erasure 
coding

● Prevents unnecessary requests resulting in messy protocol errors being 
returned to the user



public enum ClientVersion implements ComponentVersion {

  //////////////////////////////  //////////////////////////////

  DEFAULT_VERSION(0, "Initial version"),

  VERSION_HANDLES_UNKNOWN_DN_PORTS(1,

      "Client version that handles the REPLICATION port in DatanodeDetails."),

  ERASURE_CODING_SUPPORT(2, "This client version has support for Erasure Coding."),

  BUCKET_LAYOUT_SUPPORT(3, "This client version has support for Object Store and File " +

      "System Optimized Bucket Layouts."),

  FUTURE_VERSION(-1, "Used internally when the server side is older and an"

      + " unknown client version has arrived from the client.");

  //////////////////////////////  //////////////////////////////

  ...

}

public enum ClientVersion implements ComponentVersion {

  //////////////////////////////  //////////////////////////////

  DEFAULT_VERSION(0, "Initial version"),

  VERSION_HANDLES_UNKNOWN_DN_PORTS(1,

      "Client version that handles the REPLICATION port in DatanodeDetails."),

  FUTURE_VERSION(-1, "Used internally when the server side is older and an"

      + " unknown client version has arrived from the client.");

  //////////////////////////////  //////////////////////////////

  ...

}

Old client’s 
version

New server’s 
known client 

versions



Server is Newer than Client

Key is a key with 
Erasure Coded 
replication, which the 
client can not 
understand.
Please upgrade the 
client before trying to 
read the key: 
vol/ecbucket/k1 

$ ozone sh key get 
vol/ecbucket/k1 /tmp/k1



Where should the server block a read request?

1. Server receives the request to read a key
2. Server retrieves the metadata
3. Server uses the metadata to determine client compatibility

∴ Server must block the read after processing the request

  @RequestFeatureValidator(

      conditions = ValidationCondition.OLDER_CLIENT_REQUESTS,

      processingPhase = RequestProcessingPhase.POST_PROCESS,

      requestType = Type.LookupKey

  )

  public static OMResponse disallowLookupKeyResponseWithECReplicationConfig(

      OMRequest req, OMResponse resp, ValidationContext ctx)

      throws ServiceException {...}



Summary
● Ozone supports non-rolling upgrades and downgrades. This requires:

○ Disk compatibility for downgrades

○ Client/server cross compatibility

● Downgrade disk compatibility is supported using finalization

● Client/server cross compatibility is supported as much as possible, but some 
specific requests must be blocked

● Ozone uses a developer friendly framework to handle compatibility of new features

○ Feature devs can easily plug in to the upgrade and request flows as needed

○ Separation of concerns and standardized implementations improve readability



Future Work

● Extend client compatibility annotations to other components

○ Currently only implemented on OM

○ Refactor client, SCM, datanode to use annotations as well

● More robust request annotations

○ Handle client/server and layout version checking in the annotations

● Monitor how the framework meets Ozone’s evolving needs



Special Thanks
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Ozone’s upgrade compatibility efforts in the last two years.
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