


Presented by:

Apache Arrow and Go: 
A Match Made in Data

October 3rd, 2022

Matthew Topol



Who am I?

Email

matt@voltrondata.com

Author Of

“In-Memory Analytics With Apache Arrow”

Staff Software Engineer at Voltron Data
Apache Arrow Contributor

@zeroshade

https://www.amazon.com/Memory-Analytics-Apache-Arrow-hierarchical-ebook/dp/B09X76LNN9
https://twitter.com/zeroshade
https://www.linkedin.com/in/matt-topol-92390533/


The Rundown
● Quick Primer on Apache Arrow

● Why Go?

● Simple Code Examples

● Example Code Walkthrough: A Streaming Data Pipeline

● What else can we do?

● More Resources

● Q/A



5

High Performance, In-Memory Columnar Format
No Data Serialization / Deserialization required!

Polyglot! Implementations in many languages
Go, C++, Rust, Python, R, Java, Julia, MATLAB, and 
more…

https://arrow.apache.org

A quick primer on



What is Columnar?
Table of Data

Row Oriented Memory Buffer Arrow Columnar Memory Buffer



A

B

7

Why Columnar?

Memory Locality
I/O
Vectorization

Less I/O, lower memory usage, fewer page faults

Only need two columns! (Archer, Location)
1. Spin through Locations for indexes
2. Get Archers at those indexes

Get All Archers in Europe:

Significantly faster computation!

Only need the one column! (Year)
1. Vectorized operations require contiguous 

memory
2. Our column is already contiguous memory!

Calculate mean for Year column:



Simple and easy to learn

Easier deployment 
with static binaries

Excellent memory 
usage characteristics

Go is fast!

Built for easy 
concurrency

Great multi-core 
usage and scaling

But why Golang??



9

github.com/apache/arrow/go/v9

Golang Arrow 
Module

…/arrow CSV, JSON, and Arrow IPC reader/writers
Arrow Flight and Flight SQL client and server
Supports multiple architectures (AMD64, 
ARM64, s390x, etc.) and leverages SIMD/NEON

v10 should be released in the next couple weeks!!

…/parquet
Low memory usage, high performance 
reader/writer

Contains pqarrow package for easy 
interoperability between Parquet and Arrow

Supports multiple architectures (AMD64, 
ARM64, s390x, etc.) and leverages SIMD/NEON



Let’s start exploring!
The Go Arrow and Parquet libraries



11

Collection of Arrays 
with the same length 
and a Schema 
(Collection of Fields)

But first… Some Terminology and Types

Array (arrow.Array)

Logical Data type, 
length, null count and 1 
or more Buffers of data

Record Batch 
(arrow.Record)

Chunked Array 
(arrow.Chunked)

Sequence of arrays 
with the same data 
type, total length and 
total null count

Table (arrow.Table)

Collection of Columns 
(Chunked Array + Field) 
with the same total 
length and a schema



12

Build an Int64 Array

Simple Example



13

Memory Handling

Retain / Release

Manage ownership and eagerly try to free memory

Ties into Allocator interface for custom handling

memory.Allocator

Interface for custom memory allocation, default just uses 
make([]byte, …)

Only Three methods: Allocate, Reallocate, Free

CheckedAllocator for tracking memory usage

Reference counting is used to track usage of buffers



Struct Builder
Multiple field builders

Builder for each Array type and even a 
RecordBuilder which is similar to the 
StructBuilder



15

Arrow Record 
Reader/Writer

Reading and Writing Data

CSV Can provide an explicit schema or infer types 

Specify null values, delimiter, line endings

Can control Record Batch chunk size

Multiple formats supported!

Parquet
Highly efficient Columnar storage

Often Zero-Copy converting to Arrow

Can easily read columns and row groups in 
parallel

Source

https://github.com/marcusolsson/gophers/blob/master/gopherdata-gopher.png


16

Sample Usage

“The Movies Dataset”



17

1 2 3

Yes, it’s contrived. But it’s informative!

Example: A Streaming Data Pipeline

Read CSV Data Transform / Add / 
Replace Columns

Write out Parquet File



18

Kaggle: “The Movies 
Dataset”

https://www.kaggle.com/datasets/
rounakbanik/the-movies-dataset

Most columns are easy

CSV reader can handle nulls for us
Infer the column types

Zero-copy transfer to new arrow.Record

Example: The Sample Data

Some columns we want to manipulate
String column values that are JSON strings 
converted into Lists for easier processing

Any other streaming transformations you’d like…

bool, int, float, string

Source

https://github.com/marcusolsson/gophers/blob/master/orbiter-gopher.png


Reading CSV 
Data
Stream Records via Channels
Low Memory usage, easy parallelism with 
Golang



Manipulating 
the Column

Let’s dig into this a bit

Trust me, it’s easier than it looks! 
Follow along for the next few slides…



21

First: A ListBuilder
`[{‘id’: 123, ‘name’: ‘Comedy’}, {‘id’: 456, ‘name’: ‘Drama’}]`

Builders are reusable

Create a List Column 
of Structs



22

Next: Build Replacement Column
Example is just one column, but could be any number of columns in parallel

Grab column we want

Could find index via Schema 
with FieldIndices method

Parse JSON directly

UnmarshalJSON on a builder 
parses the JSON and adds 
the values to the builder



23

Next: Send the New Record

It’s a pointer! There’s no copying!

Create the Output 
Schema
Check if we have it already 
so we only create it once.

Send the New 
Record
Pass the new record to a 
different channel, 
continuing the pipeline



24

Improvement: Parallelize

Goroutines and Channels for extremely easy parallel patterns such as 
fan-out/fan-in



25

Recap: Pipeline So far…
CSV Data

(Or any Record Stream)

Channel
Channel

Process / Manipulate Records

Write 
Parquet
(Next)



26

Write a Parquet 
File
Columnar file storage

Optimized Arrow -> Parquet conversion



27

Easy reading and 
writing of data 
regardless of location

(S3, ADLS, HDFS, etc.)

Reader and Writer use io Interfaces

Parquet

Writer only needs io.Writer, great for Streams
Can read Parquet data and metadata directly or 
convert directly to/from Arrow

CSV
Only needs io.Reader and io.Writer
Control memory usage via Chunk options

Reader requires io.ReaderAt and io.Seeker



28

What about between processes?

Efficient Data 
Transportation

Arrow IPC
Communicate record batches locally or 
remotely

File and streaming formats

Can mmap for efficiency

https://arrow.apache.org/docs/format/Flight.html

Arrow Flight RPC
Arrow Flight SQL

Protobuf + Arrow IPC streams

Standardized Protocol for many clients

>20x faster than ODBC

Source

https://arrow.apache.org/docs/format/Flight.html
https://github.com/marcusolsson/gophers/blob/master/gophernotes-gopher.png


Distributed Arrow Flight 
services to be called by 
clients in any language

Efficient CLI utilities for 
data manipulation from 

remote data sources

Building an Arrow Native 
Computation Engine or 

custom Database

Deploy composable 
components to link 
against using C Data API

Some Uses for 
Apache Arrow

in Go

Building highly 
concurrent deployable 
data pipelines 

Composable services to 
offload data computation 
and analysis

What else can it do?



30

Want more examples?
More on Apache Arrow: https://arrow.apache.org/docs/

Or get my book!

Amazon Link for the Book: buff.ly/3OcoxyB
“In-Memory Analytics with Apache Arrow”

Go Arrow/Parquet docs: https://pkg.go.dev/github.com/apache/arrow/go/v9

Examples in multiple 
languages: Python / C++ / Go

Practical Examples for Arrow 
Flight and other Data Science 
workflows

https://arrow.apache.org/docs/
https://t.co/jQzOWJA5FJ
https://pkg.go.dev/github.com/apache/arrow/go/v9


31

Q&A



Thanks Everyone!

The Go Gopher image is released
under the Creative Commons 
Attribution 3.0 License, originally 
created by artist Renee French

XKCD Comics released under 
Creative Commons 
Attribution-NonCommercial 2.5 
License, created by Randall Munroe
https://xkcd.com

https://xkcd.com

