
Morel, a data-parallel
programming language
Julian Hyde (Google) @julianhyde

Title

Morel, a data-parallel programming language

Abstract

What would the perfect data-parallel programming language look like? It would be as expressive as a
general-purpose functional programming language, as powerful and concise as SQL, and run programs
just as efficiently on a laptop or a thousand-node cluster.

We present Morel, a functional programming language with relational extensions, working towards that
goal. Morel is implemented in the Apache Calcite community on top of Calcite’s relational algebra
framework. In this talk, we describe Morel’s evolution, including how we are pushing Calcite’s capabilities
with graph and recursive queries.

What is the difference
between a query and a
program?

Text files
(input)

. ..

Text files
(input)

Index files
(output)

Building a document index

a b c x y z

x y z

split split split

reduce reducereduce reduce

Text files
(input)

Index files
(output)

Building a document index

a b c

yellow: 12,
zebra: 9

WordCount

split split split

reduce reducereduce reduce

Text files
(input)

Word counts
(output)

aardvark: 3,
badger: 7

Data-parallel programming

Batch processing

Input is a large, immutable data sets

Processing can be processed in parallel pipelines

Significant chance of hardware failure during execution

Related programming models:
● Stream and incremental processing
● Deductive and graph programming

Data-parallel programming
Data-parallel
framework
(e.g.
MapReduce,
FlumeJava,
Apache Spark)

(*) You write two small functions
fun wc_mapper line =
 List.map (fn w => (w, 1)) (split line);

fun wc_reducer (key, values) =
 List.foldl (fn (x, y) => x + y) 0 values;

(*) The framework provides mapReduce
fun mapReduce mapper reducer list = ...;

(*) Combine them to build your program
fun wordCount list = mapReduce wc_mapper wc_reducer list;

Data-parallel programming
Data-parallel
framework
(e.g.
MapReduce,
FlumeJava,
Apache Spark)

(*) You write two small functions
fun wc_mapper line =
 List.map (fn w => (w, 1)) (split line);

fun wc_reducer (key, values) =
 List.foldl (fn (x, y) => x + y) 0 values;

(*) The framework provides mapReduce
fun mapReduce mapper reducer list = ...;

(*) Combine them to build your program
fun wordCount list = mapReduce wc_mapper wc_reducer list;

SQL SELECT word, COUNT(*) AS c
FROM Documents AS d,
 LATERAL TABLE (split(d.text)) AS word // requires a ‘split’ UDF
GROUP BY word;

Data-parallel programming
Data-parallel
framework
(e.g.
MapReduce,
FlumeJava,
Apache Spark)

(*) You write two small functions
fun wc_mapper line =
 List.map (fn w => (w, 1)) (split line);

fun wc_reducer (key, values) =
 List.foldl (fn (x, y) => x + y) 0 values;

(*) The framework provides mapReduce
fun mapReduce mapper reducer list = ...;

(*) Combine them to build your program
fun wordCount list = mapReduce wc_mapper wc_reducer list;

SQL SELECT word, COUNT(*) AS c
FROM Documents AS d,
 LATERAL TABLE (split(d.text)) AS word // requires a ‘split’ UDF
GROUP BY word;

Morel from line in lines,
 word in split line (*) requires ‘split’ function - see later...
group word compute c = count

What are our options?

Extend SQL Extend a functional programming
language

We’ll need to:
● Allow functions defined in

queries
● Add relations-as-values
● Add functions-as-values
● Modernize the type system

(adding type variables, function
types, algebraic types)

● Write an optimizing compiler

We’ll need to:
● Add syntax for relational operations
● Map onto external data
● Write a query optimizer

Nice stuff we get for free:
● Algebraic types
● Pattern matching
● Inline function and value declarations

Morel is a functional programming language. It is
derived from Standard ML, and is extended with
list comprehensions and other relational
operators. Like Standard ML, Morel has
parametric and algebraic data types with
Hindley-Milner type inference. Morel is
implemented in Java, and is optimized and
executed using a combination of techniques from
functional programming language compilers and
database query optimizers.

Themes

Early stage language

The target audience is SQL users

Less emphasis on abstract algebra

Program compilation + query optimization

Functional programming in-the-small + in-the-large

Quick intro to Standard ML

(All of the following examples work in both Standard ML and Morel.)

Standard ML: values and types

- "Hello, world!";
val it = "Hello, world!" : string

- 1 + 2;
val it = 3 : int

- ~1.5;
val it = ~1.5 : real

- [1, 1, 2, 3, 5];
val it = [1,1,2,3,5] : int list

- fn i => i mod 2 = 1;
val it = fn : int -> bool

- (1, "a");
val it = (1,"a") : int * string

- {name = "Fred", empno = 100};
val it = {empno=100,name="Fred"} : {empno:int, name:string}

Standard ML: variables and functions

- val x = 1;
val x = 1 : int

- val isOdd = fn i => i mod 2 = 1;
val isOdd = fn : int -> bool

- fun isOdd i = i mod 2 = 0;
val isOdd = fn : int -> bool

- isOdd x;
val it = true : bool

- let
= val x = 6
= fun isOdd i = i mod 2 = 1
= in
= isOdd x
= end;
val it = false : bool

val assigns a value to a variable.

fun declares a function.

● fun is syntactic sugar for
 val ... = fn ... => ...

let allows you to make several declarations
before evaluating an expression.

Standard ML: recursive functions

A fun declaration can refer to itself.

Recursive functions are Standard ML’s
main way of looping.

- fun factorial 0 = 1
= | factorial n = n * (factorial (n - 1));
val factorial = fn : int -> int

- factorial 5;
val it = 120 : int

Standard ML: higher-order functions

A higher-order function is a function
whose arguments or result are
functions.

List.map and List.filter are standard
library functions.

- val integers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
val it = [0,1,2,3,4,5,6,7,8,9] : int list

- List.filter (fn i => i mod 2 = 0) integers;
val it = [0,2,4,6,8] : int list

- List.filter isOdd integers;
val it = [0,2,4,6,8] : int list

- List.map (fn i => i * 3) integers;
val it = [0,3,6,9,12,15,18,21,24,27] : int list

Relational expressions

- val emps = [
= {id = 100, name = "Fred", deptno = 10},
= {id = 101, name = "Velma", deptno = 20},
= {id = 102, name = "Shaggy", deptno = 30},
= {id = 103, name = "Scooby", deptno = 30}];

- List.filter (fn e => #deptno e = 30) emps;
val it = [{deptno=30,id=102,name="Shaggy"},
 {deptno=30,id=103,name="Scooby"}]
 : {deptno:int, id:int, name:string} list

SELECT *
FROM emps AS e
WHERE e.deptno = 30

Equivalent SQL

Relational expressions #2
- List.map (fn e => {name = #name e, x = #id e - 100})
 (List.filter (fn e => #deptno e = 30) emps);
val it = [{name="Shaggy",x=2},{name="Scooby",x=3}]
 : {name:string, x:int} list

Standard ML (and Morel)

Relational expressions #2
- List.map (fn e => {name = #name e, x = #id e - 100})
 (List.filter (fn e => #deptno e = 30) emps);
val it = [{name="Shaggy",x=2},{name="Scooby",x=3}]
 : {name:string, x:int} list

Standard ML (and Morel)

SELECT e.name, e.id - 100 AS x
FROM emps AS e
WHERE e.deptno = 30

SQL

Relational expressions #2
- List.map (fn e => {name = #name e, x = #id e - 100})
 (List.filter (fn e => #deptno e = 30) emps);
val it = [{name="Shaggy",x=2},{name="Scooby",x=3}]
 : {name:string, x:int} list

Standard ML (and Morel)

SELECT e.name, e.id - 100 AS x
FROM emps AS e
WHERE e.deptno = 30

SQL

emps.filter(_.deptno = 30)
 .select(e => Row(e.name, e.id - 100))

Apache Spark / Scala

Relational expressions #2
- List.map (fn e => {name = #name e, x = #id e - 100})
 (List.filter (fn e => #deptno e = 30) emps);
val it = [{name="Shaggy",x=2},{name="Scooby",x=3}]
 : {name:string, x:int} list

Standard ML (and Morel)

SELECT e.name, e.id - 100 AS x
FROM emps AS e
WHERE e.deptno = 30

SQL

emps.filter(_.deptno = 30)
 .select(e => Row(e.name, e.id - 100))

Apache Spark / Scala

Relational algebraFilter [deptno
= 30]

Project [name,
id = 100 as x]Scan [emps]

Relational expressions #2
- List.map (fn e => {name = #name e, x = #id e - 100})
 (List.filter (fn e => #deptno e = 30) emps);
val it = [{name="Shaggy",x=2},{name="Scooby",x=3}]
 : {name:string, x:int} list

Standard ML (and Morel)

SELECT e.name, e.id - 100 AS x
FROM emps AS e
WHERE e.deptno = 30

SQL

emps.filter(_.deptno = 30)
 .select(e => Row(e.name, e.id - 100))

Apache Spark / Scala

Relational algebra

from e in emps
 where e.deptno = 30
 yield {e.name, x = e.id - 100};

Morel

Filter [deptno
= 30]

Project [name,
id = 100 as x]Scan [emps]

Morel

Morel extensions to Standard ML:
● from operator creates a list

comprehension
● x.field is shorthand for

#field x
● {#field} is shorthand for

{field = #field x}

List.map
 (fn (d, e) => {deptno = #deptno d, name = #name e})
 (List.filter
 (fn (d, e) => #deptno d = #deptno e)
 (flatMap
 (fn e => (List.map (fn d => (d, e)) depts))
 emps));

Implementing Join in Morel using from

Morel extensions to Standard ML:
● from operator creates a list

comprehension
● x.field is shorthand for

#field x
● {#field} is shorthand for

{field = #field x}

SELECT d.deptno, e.name
FROM emps AS e,
 depts AS d
WHERE d.deptno = e.deptno

Equivalent SQL

List.map
 (fn (d, e) => {deptno = #deptno d, name = #name e})
 (List.filter
 (fn (d, e) => #deptno d = #deptno e)
 (flatMap
 (fn e => (List.map (fn d => (d, e)) depts))
 emps));

from e in emps,
 d in depts
 where #deptno e = #deptno d
 yield {deptno = #deptno d, name = #name e};

Implementing Join in Morel using from

Morel extensions to Standard ML:
● from operator creates a list

comprehension
● x.field is shorthand for

#field x
● {#field} is shorthand for

{field = #field x}

SELECT d.deptno, e.name
FROM emps AS e,
 depts AS d
WHERE d.deptno = e.deptno

Equivalent SQL

List.map
 (fn (d, e) => {deptno = #deptno d, name = #name e})
 (List.filter
 (fn (d, e) => #deptno d = #deptno e)
 (flatMap
 (fn e => (List.map (fn d => (d, e)) depts))
 emps));

from e in emps,
 d in depts
 where #deptno e = #deptno d
 yield {deptno = #deptno d, name = #name e};

from e in emps,
 d in depts
 where e.deptno = d.deptno
 yield {d.deptno, e.name};

Implementing Join in Morel using from

Morel extensions to Standard ML:
● from operator creates a list

comprehension
● x.field is shorthand for

#field x
● {#field} is shorthand for

{field = #field x}

SELECT d.deptno, e.name
FROM emps AS e,
 depts AS d
WHERE d.deptno = e.deptno

Equivalent SQL

WordCount
let
 fun split0 [] word words = word :: words
 | split0 (#" " :: s) word words = split0 s "" (word :: words)
 | split0 (c :: s) word words = split0 s (word ^ (String.str c)) words
 fun split = List.rev (split0 (String.explode s) "" [])
in
 from line in lines,
 word in split line
 group word compute c = count
end;

WordCount
- let
= fun split0 [] word words = word :: words
= | split0 (#" " :: s) word words = split0 s "" (word :: words)
= | split0 (c :: s) word words = split0 s (word ^ (String.str c)) words
= fun split = List.rev (split0 (String.explode s) "" [])
= in
= from line in lines,
= word in split line
= group word compute c = count
= end;
val wordCount = fn : string list -> {c:int, word:string} list

- wordCount ["a skunk sat on a stump",
= "and thunk the stump stunk",
= "but the stump thunk the skunk stunk"];
val it =
 [{c=2,word="a"},{c=3,word="the"},{c=1,word="but"},
 {c=1,word="sat"},{c=1,word="and"},{c=2,word="stunk"},
 {c=3,word="stump"},{c=1,word="on"},{c=2,word="thunk"},
 {c=2,word="skunk"}] : {c:int, word:string} list

Functional
programming
“in the small”

Functional
programming
“in the large”

Functions as views, functions as values
- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

Functions as views, functions as values

emps2 is a function
that returns a
collection

- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

Functions as views, functions as values

The comp field is a
function value (in
fact, it’s a closure)

emps2 is a function
that returns a
collection

Functions as views, functions as values
- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

- from e in emps2 ()
= yield {e.name, e.id, c = e.comp 1000};

The comp field is a
function value (in
fact, it’s a closure)

emps2 is a function
that returns a
collection

Functions as views, functions as values
- fun emps2 () =
= from e in emps
= yield {e.id,
= e.name,
= e.deptno,
= comp = fn revenue => case e.deptno of
= 30 => e.id + revenue / 2
= | _ => e.id};
val emps2 = fn : unit -> {comp:int -> int,
 deptno:int, id:int, name:string} list

- from e in emps2 ()
= yield {e.name, e.id, c = e.comp 1000};
val it =
 [{c=100,id=100,name="Fred"},
 {c=101,id=101,name="Velma"},
 {c=602,id=102,name="Shaggy"},
 {c=603,id=103,name="Scooby"}]
 : {c:int, id:int, name:string} list

Chaining relational operators
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4
= group deptno compute c = count, s = sum of nameLength
= where s > 10
= yield c + s;

val it = [14] : int list

Chaining relational operators - step 1
- from e in emps;

val it =
 [{deptno=10,id=100,name="Fred"},
 {deptno=20,id=101,name="Velma"},
 {deptno=30,id=102,name="Shaggy"},
 {deptno=30,id=103,name="Scooby"}]
 : {deptno:int, id:int, name:string} list

Chaining relational operators - step 2
- from e in emps
= order e.deptno, e.id desc;

val it =
 [{deptno=10,id=100,name="Fred"},
 {deptno=20,id=101,name="Velma"},
 {deptno=30,id=103,name="Scooby"},
 {deptno=30,id=102,name="Shaggy"}]
 : {deptno:int, id:int, name:string} list

Chaining relational operators - step 3
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno};

val it =
 [{deptno=10,id=100,name="Fred",nameLength=4},
 {deptno=20,id=101,name="Velma",nameLength=5},
 {deptno=30,id=103,name="Scooby",nameLength=6},
 {deptno=30,id=102,name="Shaggy",nameLength=6}]
 : {deptno:int, id:int, name:string, nameLength:int} list

Chaining relational operators - step 4
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4;

val it =
 [{deptno=20,id=101,name="Velma",nameLength=5},
 {deptno=30,id=103,name="Scooby",nameLength=6},
 {deptno=30,id=102,name="Shaggy",nameLength=6}]
 : {deptno:int, id:int, name:string, nameLength:int} list

Chaining relational operators - step 5
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4
= group deptno compute c = count, s = sum of nameLength;

val it =
 [{c=1,deptno=20,s=5},
 {c=2,deptno=30,s=12}]
 : {c:int, deptno:int, s:int} list

Chaining relational operators - step 6
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4
= group deptno compute c = count, s = sum of nameLength
= where s > 10;

val it =
 [{c=2,deptno=30,s=12}]
 : {c:int, deptno:int, s:int} list

Chaining relational operators
= from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4
= group deptno compute c = count, s = sum of nameLength
= where s > 10
= yield c + s;

val it = [14] : int list

Chaining relational operators
Morel from e in emps

 order e.deptno, e.id desc
 yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
 where nameLength > 4
 group deptno compute c = count, s = sum of nameLength
 where s > 10
 yield c + s;

Chaining relational operators
Morel from e in emps

 order e.deptno, e.id desc
 yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
 where nameLength > 4
 group deptno compute c = count, s = sum of nameLength
 where s > 10
 yield c + s;

SQL (almost
equivalent)

SELECT c + s
FROM (SELECT deptno, COUNT(*) AS c, SUM(nameLength) AS s
 FROM (SELECT e.name, CHAR_LENGTH(e.ename) AS nameLength, e.id, e.deptno
 FROM (SELECT *
 FROM emps AS e
 ORDER BY e.deptno, e.id DESC))
 WHERE nameLength > 4
 GROUP BY deptno
 HAVING s > 10)

Chaining relational operators
Morel from e in emps

 order e.deptno, e.id desc
 yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
 where nameLength > 4
 group deptno compute c = count, s = sum of nameLength
 where s > 10
 yield c + s;

SQL (almost
equivalent)

SELECT c + s
FROM (SELECT deptno, COUNT(*) AS c, SUM(nameLength) AS s
 FROM (SELECT e.name, CHAR_LENGTH(e.ename) AS nameLength, e.id, e.deptno
 FROM (SELECT *
 FROM emps AS e
 ORDER BY e.deptno, e.id DESC))
 WHERE nameLength > 4
 GROUP BY deptno
 HAVING s > 10)

Java (very
approximately)

for (Emp e : emps) {
 String name = e.name;
 int nameLength = name.length();
 int id = e.id;
 int deptno = e.deptno;
 if (nameLength > 4) {
 ...

Apache Calcite

Apache Calcite

Apache Calcite ServerJDBC server

JDBC client

SQL parser &
validator

Query
planner

Adapter

Pluggable
rewrite rules

Pluggable
stats / cost

Pluggable
catalog

Physical
operators

Storage

Relational
algebra

Toolkit for writing a DBMS

Many parts are optional or
pluggable

Relational algebra is the
core

SELECT d.name, COUNT(*) AS c
FROM Emps AS e
JOIN Depts AS d USING (deptno)
WHERE e.age > 50
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Relational algebra

Based on set theory, plus
operators: Project, Filter,
Aggregate, Union, Join, Sort

Calcite provides:
● SQL to relational algebra
● Query planner
● Physical operators to execute

plan
● An adapter system to make

external data sources look
like tables

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age > 50]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]

Algebraic rewrite

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age > 50]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]
Calcite optimizes queries by
applying rewrite rules that
preserve semantics.

Planner uses dynamic
programming, seeking the
lowest total cost.

SELECT d.name, COUNT(*) AS c
FROM (SELECT * FROM Emps
 WHERE e.age > 50) AS e
JOIN Depts AS d USING (deptno)
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Integration of Morel with Apache Calcite - schemas

Expose Calcite schemas as named
records, each field of which is a table.

A default Morel connection has
variables foodmart and scott
(connections to hsqldb via Calcite’s
JDBC adapter).

Connections to other Calcite
adapters (Apache Cassandra, Druid,
Kafka, Pig, Redis) are also possible.

- foodmart;
val it = {account=<relation>, currency=<relation>,
 customer=<relation>, ...} : ...;

- scott;
val it = {bonus=<relation>, dept=<relation>,
 emp=<relation>, salgrade=<relation>} : ...;

- scott.dept;
val it =
 [{deptno=10,dname="ACCOUNTING",loc="NEW YORK"},
 {deptno=20,dname="RESEARCH",loc="DALLAS"},
 {deptno=30,dname="SALES",loc="CHICAGO"},
 {deptno=40,dname="OPERATIONS",loc="BOSTON"}]
 : {deptno:int, dname:string, loc:string} list

- from d in scott.dept
= where notExists (from e in scott.emp
= where e.deptno = d.deptno
= andalso e.job = "CLERK");
val it =
 [{deptno=40,dname="OPERATIONS",loc="BOSTON"}]
 : {deptno:int, dname:string, loc:string} list

- Sys.set ("hybrid", true);
val it = () : unit

- from d in scott.dept
= where notExists (from e in scott.emp
= where e.deptno = d.deptno
= andalso e.job = "CLERK");
val it = [{deptno=40,dname="OPERATIONS",loc="BOSTON"}]
 : {deptno:int, dname:string, loc:string} list

Integration of Morel with Apache Calcite - relational algebra

In “hybrid” mode, Morel’s compiler identifies
sections of Morel programs that are
relational operations and converts them to
Calcite relational algebra.

Calcite can them optimize these and
execute them on their native systems.

- Sys.set ("hybrid", true);
val it = () : unit

- from d in scott.dept
= where notExists (from e in scott.emp
= where e.deptno = d.deptno
= andalso e.job = "CLERK");
val it = [{deptno=40,dname="OPERATIONS",loc="BOSTON"}]
 : {deptno:int, dname:string, loc:string} list

- Sys.plan();
val it = "calcite(plan
LogicalProject(deptno=[$0], dname=[$1], loc=[$2])
 LogicalFilter(condition=[IS NULL($4)])
 LogicalJoin(condition=[=($0, $3)], joinType=[left])
 LogicalProject(deptno=[$0], dname=[$1], loc=[$2])
 JdbcTableScan(table=[[scott, DEPT]])
 LogicalProject(deptno=[$0], $f1=[true])
 LogicalAggregate(group=[{0}])
 LogicalProject(deptno=[$1])
 LogicalFilter(condition=[AND(=($5, 'CLERK'), IS NOT NULL($1))])
 LogicalProject(comm=[$6], deptno=[$7], empno=[$0],ename=[$1], hiredate=[$4], job=[$2]
 JdbcTableScan(table=[[scott, EMP]]))" : string

Integration of Morel with Apache Calcite - relational algebra

In “hybrid” mode, Morel’s compiler identifies
sections of Morel programs that are
relational operations and converts them to
Calcite relational algebra.

Calcite can them optimize these and
execute them on their native systems.

Optimization

Relational query optimization

● Applies to relational operators (~10 core
operators + UDFs) not general-purpose
code

● Transformation rules that match patterns
(e.g. Filter on Project)

● Decisions based on cost & statistics
● Hybrid plans - choose target engine, sort

order
● Materialized views
● Macro-level optimizations

Functional program optimization

● Applies to typed lambda calculus
● Inline constant lambda expressions
● Eliminate dead code
● Defend against mutually recursive groups
● Careful to not inline expressions that are

used more than once (increasing code
size) or which bind closures more often
(increasing running time)

● Micro-level optimizations

[GM] “The Volcano Optimizer Generator: Extensibility and Efficient Search” (Graefe, McKenna 1993)
[PJM] “Secrets of the Glasgow Haskell Compiler inliner” (Peyton Jones, Marlow 2002)

Recursively-defined sets

Recursively-defined sets in mathematics

Example 1. Fibonacci numbers

F = {fi} = [1, 1, 2, 3, 5, 8, 13, 21, 34, …]

f0 = 1
f1 = 1
fn = fn-2 + fn-1 (n ≥ 2)

Romanesco broccoli (wikimedia)

Recursively-defined sets in mathematics

Example 2. Transitive closure

Given a binary relation (set of pairs) R, we can define its transitive closure S using set
operations

or, in terms of set membership

or, in computerese

(These dual ways to define a set have a long history, and are the roots of the split
between relational algebra and relational calculus.)

S = R ∪ (R ⨝ S)

(x, y) ∈ S ↔ (x, y) ∈ R ∨ ∃z.((x, z) ∈ R ∧ (z, y) ∈ S)

inS(x, y) = inR(x, y) orelse exists z suchthat (inR(x, z) and inS(z, y))

fun ancestors () =
 (from (x, y) in parents)
 union
 (from (x, y) in parents,
 (y2, z) in ancestors ()
 where y = y2
 yield (x, z));

from (ancestor, descendant) in ancestors ()
 where descendant = "arwen";
Uncaught exception: StackOverflowError

Recursively-defined sets in Morel - attempt #1
val parents =
 [("earendil", "elrond"), ("elrond", "arwen"),
 ("elrond", "elladan"), ("elrond", "elrohir")];

from (parent, child) in parents
 where parent = "elrond";
[("elrond", "arwen"), ("elrond", "elladan"),
 ("elrond", "elrohir")];

earendil

elrond

arwen elladan elrohir

SQL
CREATE VIEW ancestors AS
 WITH RECURSIVE a AS (
 SELECT parent AS ancestor,
 child AS descendant
 FROM parents
 UNION ALL
 SELECT a.ancestor, p.child
 FROM parents AS p
 JOIN a ON a.descendant = p.parent)
 SELECT * FROM a;

SELECT * FROM ancestors
WHERE descendant = 'arwen';
ancestor descendant
======== =======
earendil arwen
elrond arwen

SQL
SELECT * FROM parents
WHERE parent = 'elrond';
parent child
====== =======
elrond arwen
elrond elladan
elrond elrohir

Recursively-defined sets in SQL

SQL treats UNION as
a special operator,
and knows how to
terminate when it
reaches a fixed point

Datalog
is_parent(earendil, elrond).
is_parent(elrond, arwen).
is_parent(elrond, elladan).
is_parent(elrond, elrohir).

answer(X) :- is_parent(elrond, X).
X = arwen
X = elladan
X = elrohir

Datalog
is_ancestor(X, Y) :- is_parent(X, Y).
is_ancestor(X, Y) :- is_parent(X, Z),
 is_ancestor(Z, Y).

answer(X) :- is_ancestor(X, arwen).
X = earendil
X = elrond

Recursively-defined sets in Datalog

● Morel’s first attempt failed because the recursive function didn’t know when to stop
● SQL allows only one operation (UNION over set), and therefore fixed point is

well-defined
● That won’t work for Morel; we want recursive functions over all types, not just sets
● Datalog operates in the dual space, “Can I prove that x is a member of a set”?

Functions reach a fixed point when the set of (arg, result) pairs stops growing

Morel
fun isAncestor (x, y) =
 (x, y) elem parents
 orelse exists (
 from z suchthat (x, z) elem parents
 andalso isAncestor (z, y));

from ancestor suchthat isAncestor (ancestor, "arwen");
[“earendil”, “elrond”];

Recursively-defined set in Morel via a recursive predicate

The suchthat operator performs constrained iteration. It assigns to
ancestor every value for which isAncestor (ancestor, "arwen") will
evaluate to true.

Basically, it runs the machine backwards. Seems like magic, but
surprisingly, the compiler can usually figure out what to do.

There are deep connections with how SQL handles correlated queries.

Q. What is the difference
between a query and a
program?

A. There’s no difference if you have the right
programming language, a seamless blend of
● functional (elegant type system, Turing power),
● query (data-parallel evaluation, optimizer) and
● deductive (concisely express recursive sets)

languages

Morel
Functional query language

Rich type system, concise as SQL, Turing complete

Combines (relational) query optimization with
(lambda) FP optimization techniques

Execute in Java interpreter and/or data-parallel
engines from e in emps,

 d in depts
 where e.deptno = d.deptno
 yield {d.deptno, e.name};

from line in lines,
 word in split line
 group word compute c = count;

Lots to be done! (Contributions welcome)

Tail-call elimination

Improve type deduction for record types

Pair with a distributed compute engine (e.g. Apache Spark, Google Dremel,
DuckDB) perhaps via Apache Arrow + Substrait

Complete suchthat operator

Efficiently compute recursive sets (semi-naïve evaluation)

Cost-based optimization via Apache Calcite

Thank you!
Questions?
Julian Hyde (Google) @julianhyde
https://github.com/hydromatic/morel @morel_lang
https://calcite.apache.org @ApacheCalcite

https://github.com/julianhyde/morel
https://calcite.apache.org

Extra slides

Evolution of functional
languages

Standard
ML

OCamlHaskell

Scala

ML

Java

F#

C#

Lisp

Scheme

Clojure

1958

1975

1973

1983

1995

1995

1990

2000

2004
2005

2007

Extend Standard ML

Standard ML is strongly statically
typed, and can very frequently
deduce every type in a program.

Standard ML has record types.
(These are important for queries.)

Haven’t decided whether Morel is
eager (like Standard ML) or lazy
(like Haskell and SQL)

Haskell’s type system is more
powerful. So, Haskell programs
often have explicit types.

Standard
ML

Haskell

Scala

ML

Java

F#

C#

Morel

SQL

Lisp

Scheme

Clojure

OCaml

1975

2019

Other operators

from in

where

yield

order … desc

group … compute

count max min sum

intersect union except

exists notExists elem notElem only

Compared to other languages

Haskell – Haskell comprehensions are more general (monads vs lists). Morel is
focused on relational algebra and probably benefits from a simpler type system.

Builder APIs (e.g. LINQ, FlumeJava, Cascading, Apache Spark) – Builder APIs
are two languages. E.g. Apache Spark programs are Scala that builds an
algebraic expression. Scala code (especially lambdas) is sprinkled throughout the
algebra. Scala compilation is not integrated with algebra optimization.

SQL – SQL’s type system does not have parameterized types, so higher order
functions are awkward. Tables and columns have separate namespaces, which
complicates handling of nested collections. Functions and temporary variables
cannot be defined inside queries, so queries are not Turing-complete (unless you
use recursive query gymnastics).

Standard ML: types
Type Example

Primitive types bool
char
int
real
string
unit

true: bool
#"a": char
~1: int
3.14: real
"foo": string
(): unit

Function types string -> int
int * int -> int

String.size
fn (x, y) => x + y * y

Tuple types int * string (10, "Fred")

Record types {empno:int, name:string} {empno=10, name="Fred"}

Collection types int list
(bool * (int -> int)) list

[1, 2, 3]
[(true, fn i => i + 1)]

Type variables 'a List.length: 'a list -> int

- datatype 'a tree =
= EMPTY
= | LEAF of 'a
= | NODE of ('a * 'a tree * 'a tree);

Algebraic data types, case, and recursion

datatype declares an algebraic data type. 'a Is a
type variable and therefore 'a tree is a
polymorphic type.

- datatype 'a tree =
= EMPTY
= | LEAF of 'a
= | NODE of ('a * 'a tree * 'a tree);

- val t =
= NODE (1, LEAF 2, NODE (3, EMPTY, LEAF 7));

EMPTY

Algebraic data types, case, and recursion

datatype declares an algebraic data type. 'a Is a
type variable and therefore 'a tree is a
polymorphic type.

Define an instance of tree using its constructors
NODE, LEAF and EMPTY.

LEAF
2

NODE
1

NODE
3

LEAF
7

- datatype 'a tree =
= EMPTY
= | LEAF of 'a
= | NODE of ('a * 'a tree * 'a tree);

- val t =
= NODE (1, LEAF 2, NODE (3, EMPTY, LEAF 7));

- val rec sumTree = fn t =>
= case t of EMPTY => 0
= | LEAF i => i
= | NODE (i, l, r) =>
= i + sumTree l + sumTree r;
val sumTree = fn : int tree -> int

- sumTree t;
val it = 13 : int

Algebraic data types, case, and recursion

datatype declares an algebraic data type. 'a Is a
type variable and therefore 'a tree is a
polymorphic type.

Define an instance of tree using its constructors
NODE, LEAF and EMPTY.

case matches patterns,
deconstructing data types, and
binding variables as it goes.

sumTree use case and calls
itself recursively.

EMPTY

LEAF
2

NODE
1

NODE
3

LEAF
7

- datatype 'a tree =
= EMPTY
= | LEAF of 'a
= | NODE of ('a * 'a tree * 'a tree);

- val t =
= NODE (1, LEAF 2, NODE (3, EMPTY, LEAF 7));

- val rec sumTree = fn t =>
= case t of EMPTY => 0
= | LEAF i => i
= | NODE (i, l, r) =>
= i + sumTree l + sumTree r;
val sumTree = fn : int tree -> int

- sumTree t;
val it = 13 : int

- fun sumTree EMPTY = 0
= | sumTree (LEAF i) = i
= | sumTree (NODE (i, l, r)) =
= i + sumTree l + sumTree r;
val sumTree = fn : int tree -> int

Algebraic data types, case, and recursion

datatype declares an algebraic data type. 'a Is a
type variable and therefore 'a tree is a
polymorphic type.

Define an instance of tree using its constructors
NODE, LEAF and EMPTY.

case matches patterns,
deconstructing data types, and
binding variables as it goes.

sumTree use case and calls
itself recursively.

EMPTY

LEAF
2

NODE
1

NODE
3

LEAF
7

fun is a shorthand for
case and val rec.

Functional programming ↔ relational programming
Functional
programming
in-the-small

- fun squareList [] = []
= | squareList (x :: xs) = x * x :: squareList xs;
val squareList = fn : int list -> int list

- squareList [1, 2, 3];
val it = [1,4,9] : int list

Functional
programming
in-the-large

- fun squareList xs = List.map (fn x => x * x) xs;
val squareList = fn : int list -> int list

- squareList [1, 2, 3];
val it = [1,4,9] : int list

Relational
programming

- fun squareList xs =
= from x in xs
= yield x * x;

- squareList [1, 2, 3];
val it = [1,4,9] : int list

Implementing Join using higher-order functions

List.map function is equivalent to
Project relational operator (SQL
SELECT)

We also define a flatMap function.

- val depts = [
= {deptno = 10, name = "Sales"},
= {deptno = 20, name = "Marketing"},
= {deptno = 30, name = "R&D"}];

- fun flatMap f xs = List.concat (List.map f xs);
val flatMap =
 fn : ('a -> 'b list) -> 'a list -> 'b list

- List.map
= (fn (d, e) => {deptno = #deptno d, name = #name e})
= (List.filter
= (fn (d, e) => #deptno d = #deptno e)
= (flatMap
= (fn e => (List.map (fn d => (d, e)) depts))
= emps));
val it =
 [{deptno=10,name="Fred"}, {deptno=20,name="Velma"},
 {deptno=30,name="Shaggy"}, {deptno=30,name="Scooby"}]
 : {deptno:int, name:string} list

SELECT d.deptno, e.name
FROM emps AS e,
 depts AS d
WHERE d.deptno = e.deptno

Equivalent SQL

wordCount again
wordCount
in-the-small

- fun wordCount list = ...;
val wordCount = fn : string list -> {count:int, word:string} list

wordCount
in-the-large using
mapReduce

- fun mapReduce mapper reducer list = ...;
val mapReduce = fn : ('a -> ('b * 'c) list) ->
 ('b * 'c list -> 'd) -> 'a list -> ('b * 'd) list

- fun wc_mapper line =
= List.map (fn w => (w, 1)) (split line);
val wc_mapper = fn : string -> (string * int) list

- fun wc_reducer (key, values) =
= List.foldl (fn (x, y) => x + y) 0 values;
val wc_reducer = fn : 'a * int list -> int

- fun wordCount list = mapReduce wc_mapper wc_reducer list;
val wordCount = fn : string list -> {count:int, word:string} list

Relational
implementation of
mapReduce

- fun mapReduce mapper reducer list =
= from e in list,
= (k, v) in mapper e
= group k compute c = (fn vs => reducer (k, vs)) of v;

group …. compute
- fun median reals = ...;
val median = fn : real list -> real

- from e in emps
= group x = e.deptno mod 3,
= e.job
= compute c = count,
= sum of e.sal,
= m = median of e.sal + e.comm;
val it = {c:int, job:string, m:real, sum:real, x.int} list

Morel

Relation defined using algebra
fun clerks () =
 from e in emps
 where e.job = "CLERK";

Query uses regular iteration
from e in clerks,
 d in depts
 where d.deptno = e.deptno
 andalso d.loc = "DALLAS"
 yield e.name;
[“SMITH”, “ADAMS”];

Morel

Relation defined using a predicate
fun isClerk e =
 e.job = "CLERK";

Query uses a mixture of constrained
and regular iteration
from e suchthat isClerk e,
 d in depts
 where d.deptno = e.deptno
 andalso d.loc = "DALLAS"
 yield e.name;
[“SMITH”, “ADAMS”];

Two ways to define a relation

