
Decoupling Indexing
and Search Scalability

- Vigya Sharma, Tue Bui

Who are we?

Vigya Sharma
• Apache Lucene Committer since Aug, ‘22
• Search and Distributed Systems Engineer at Amazon
• vigyasharma@apache.org

Tue Bui
• Search Engineer for about 8 years
• Currently, Sr. Software Engineer at Amazon Search

mailto:vigyasharma@apache.org

Outline

1. The Problem
2. Scaling Challenges with NRT Updates
3. Solution Approach
4. New in Lucene 9.4.0!
5. Road to Production
6. Early Performance Numbers
7. Q/A

“

”

Let’s start at the very
beginning.
A very good place to start…

- The Sound of Music

A typical Lucene Search App.

Scaling for Search Traffic

Search
IndexData Queries

Scaling for Search Traffic

Search
IndexData Queries

Scaling for High Data Volume

´ Add replicas – multiple copies of the same index

´ High Search Throughput

´ Low Latency – each replica has the entire index

Search
IndexData QueriesSearch

Index
Search
Index

Replicas

Scaling for High Data Volume

´ Add replicas – multiple copies of the same index

´ High Search Throughput

´ Low Latency – each replica has the entire index

Search
IndexData QueriesSearch

Index
Search
Index

Replicas

Shards and Replicas

Data Queries

P0

P1

P2

Pn

Replicas

Sh
a

rd
s

P0

P1

P2

Pn

P0

P1

P2

Pn

P0

P1

P2

Pn

Thinking about Scaling

Indexing
´ Ingestion Rate
´ Data Pipeline Capacity
´ Preprocessing Requirements
´ Tolerance for staleness

Search
´ Search Traffic Throughput
´ Tail Latencies
´ Matching / Scoring /

Inference complexity
´ Collation Overhead and Cost

Tight Coupling

Data Queries

P0

P1

P2

Pn

Replicas

Sh
a

rd
s

P0

P1

P2

Pn

P0

P1

P2

Pn

P0

P1

P2

Pn

The Problem at Amazon Search

´ High query throughput
´ High indexing rate
´ Near real time updates

´ To scale indexing by 3x –
´ instead of a 7% increase in h/w, we needed a 200% increase!

Decoupling Indexing and
Search

With Near Real Time Updates

The Recipe

´ 1/ Use Segment Replication
´ 2/ Separate indexing and search shards
´ 3/ Recombine shards after indexing to suit search width.

Segment Replication

Combine Indexes for Search

´ IndexWriter#addIndexes (Directory…)
＋ Fast – No need to reindex
＋ Transactional
＋ Copies segment files from provided directories

− Cannot modify incoming segments
− Append only. Does not apply previous deletes.

Ordinals in Lucene

´ Unique Identifiers
´ <Integer Ordinal> à <String or

Binary Value>
´ Helps count and refer to

unique values

Taxonomy Ordinals in Lucene

0: color/red
1: color/blue
2: city/new orleans
…

0: city/new york
1: color/red
2: color/blue
…

0: company/apple
1: company/samsung
2: color/green
…

Shard-0 Shard-1 Shard-2

0: color/red
1: color/blue
2: city/new orleans
3: city/new york
4: company/apple
5: company/Samsung
6: color/greenSe

a
rc

h
Sh

a
rd

Old New

0 3

1 0

2 1

Old New

0 4

1 5

2 6

Deletes / Updates in Lucene

´ High performance, lock free, per thread delete queue
´ Updates are buffered and applied at flush
´ Live docs – bitset for docs still alive
´ At flush,

´ Buffered updates applied to previous commits

´ Live docs updated to reflect previous generation deletes

Cross Shard Deletes / Updates

´ To apply deletes to old segments, you need access to old segments.

´ Single shard: no problem.

´ Works for segment replication for a single shard –
´ As long as replica doesn’t do merges, live docs can be replicated.

´ Cross Shards: Segment geometry has changed!

´ Live docs are no longer valid.

´ Need to handle it manually

Carrying deletes forward

´ At Amazon Search, deletes are on a primary key
´ Create special marker doc for deleted documents.
´ Can reapply deletes when combining index.

´ Future Work?
´ Carry forward frozen deletes for the general case?

Modifying the incoming indexes

´ IndexWriter#addIndexes (CodecReader…)

1. Create FilteredLeafReaders on incoming segments
2. Apply transformations like ordinal remapping
3. Process any pending deletes
4. Wrap as a CodecReader and add to index

“addIndexes”: Under the Hood

´ Transactional API to add readers into the index.
´ Readers are only “views” on actual index segments
´ Need to be written down as segments

´ Merges all readers into a single segment… in a single thread.
´ Blocking
´ Slow
´ High add to search latency.

“

”
But we want near real time
updates !

Changes in Lucene – 9.4

´ addIndexes (CodecReader…) is now concurrent
´ One thread per segment
´ Configurable via MergePolicy#findMerges()
´ Still Transactional
´ Eventually merged in background using concurrent merge

scheduler
´ Low add-document to search latency

Bringing it all together

Test Architecture

Overlap Testing Architecture

Extended setup for decoupled
indexing / search

Early Performance Numbers

Fleet Size

Indexing Time

Indexing Time v/s Hardware Needed

Baseline With De-coupling Without De-coupling

Seq. v/s Conc. Add Indexes

Applications

´ Unlock your indexing layer to do more

´ Narrower search fleet for better cost and performance

´ Fewer offline indexing processes

´ Scale data intensive near real time applications –
´ Log analytics

´ Incident Response

´ Generating metrics and aggregate dashboards

Thank you… Questions?

