
Vertically Autoscaling with
Cassandra
Karla Saur - Principal Research SDE
Microsoft - Gray Systems Lab (GSL)

With thanks to:
Anna Pavlenko (VASIM creator), GSL Team, German Eichberger

About me

I am a Principal Research SDE in Gray Systems Lab (GSL) at Microsoft, an applied
research lab within Azure Data.

Before Microsoft, I completed my PhD ~10 years ago, and worked as researcher
on Telco/5G autoscaling

My main research focus is optimizing cloud infrastructure for database and
machine learning workloads from a general perspective.

I hope that some of the techniques I mention are useful to you, and I am excited
to learn more about Cassandra while at this conference!

https://www.microsoft.com/en-us/research/group/gray-systems-lab/

About me

I am a Principal Research SDE in Gray Systems Lab (GSL) at Microsoft, an applied
research lab within Azure Data.

Before Microsoft, I completed my PhD ~10 years ago, and worked as researcher
on Telco/5G autoscaling

My main research focus is optimizing cloud infrastructure for database and
machine learning workloads from a general perspective.

I hope that some of the techniques I mention are useful to you, and I am excited
to learn more about Cassandra while at this conference!

https://www.microsoft.com/en-us/research/group/gray-systems-lab/

Initial Project: Monolithic DB’s on K8s

• Originally, our team was tasked with
optimizing deployments of monolithic
databases (ex: 1 primary, 2 secondaries, fixed)
running on Kubernetes.

• We found that many users were
overprovisioned in terms of CPU allocation,
which is how we bill (#CPUs/hour)

• This began our vertical scaling journey.

Red (upper line) - CPU limit setting
Blue (lower line) - actual CPU usage

Vertically autoscaling with Cassandra

• Cassandra is famous for its linear scaling, seamlessly adds more nodes.
• However, bringing up a new node (horizontal scaling) involves data movement

and can take a significant amount of time

• Vertical scaling does not involve data movement.
• It can provide an additional mechanism to right-size resources.

• There are many ways to run Cassandra (on VMs, on containers, on
Kubernetes, K8ssandra, etc), and techniques are generally applicable.
• We can often scale the cores in-place without restart

Scenario: Vertically Scaling Generic DBs

• Example: a database runs as a set of Kubernetes Pods with n cores each.
• Users are billed based on a max CPU limit they specify

• Kubernetes excels at HORIZONTAL pod autoscaling, but our database use
case is a fixed number of replicas. But we can scale VERTICALLY!

pod pod pod

NODE2
limit: 4 cores

NODE3
limit: 4 cores

NODE1
limit: 4 cores

NODE1
limit: 3 cores

NODE2
limit: 3 cores

NODE3
limit: 3 cores

Generic Vertical Autoscaling (end-to-end)

controller

select
metrics

data

metrics
server

Pluggable
recommender

algorithms

reads decisionswrites

triggers action

reads

Healthy?
Resources?
Do decision.

Scaler

Application
limit: 4 cores

Application
limit: 4 cores

Application
limit: 4 cores

scales

Application
limit: 3 cores

Application
limit: 3 cores

Application
limit: 3 cores

Could be any (csv, open
telemetry, other standards).

Could be rest API,
recommendation
service, etc.

Could be Kubernetes,
some other container
orchestrator, etc.

Could be Kubernetes, or
other program capable of
making changes to the
application as-needed.

Outline

• Mechanism
• Vertically scaling in-place

• Cassandra perf impacts?

• Policy
• CaaSPER: Proactive/Reactive algorithm for balancing price-perf trade-off

• Code/demo: VASIM - Vertical Autoscaling SIMulator
• Try your own autoscaling algorithm!

• Autotuning: parameter tune your own algorithm

• How to get started with Cassandra

Mechanism: scaling in-place

controller

select
metrics

data

metrics
server

Pluggable
recommender

algorithms

reads decisionswrites

triggers action

reads

Healthy?
Resources?
Do decision.

Scaler

Application
limit: 4 cores

Application
limit: 4 cores

Application
limit: 4 cores

scales

Application
limit: 3 cores

Application
limit: 3 cores

Application
limit: 3 cores

Could be any (csv, open
telemetry, other standards).

Could be rest API,
recommendation
service, etc.

Could be Kubernetes,
some other container
orchestrator, etc.

Restarts hinder scaling nimbly in stateful workloads
(even with containers!)

Rolling upgrade process

With no restarts, we could minimize
throttling and optimize scaling further and
more safely by reacting faster

Rolling restart HA process (~10-15
min) makes scaling perf much worse
than necessary due to delay.

5/12

No restart!

In-place/no-restart scaling of CPUs

• Docker: docker update some-cassandra --cpus or --cpu-quota

• K8s: In-place updates officially an alpha feature in the 1.27 release (~April 2023)
under the feature gate InPlacePodVerticalScaling

• Changed simply by patching the running pod spec

• Default behavior is “in-place” unless resizePolicy is set to RestartContainer

https://kubernetes.io/blog/2023/05/12/in-place-pod-resize-alpha/

What is the perf impact if the DB thinks it has
n cores, but we actually give it m cores?
• 3 replica SQL (on Linux) deployed on 32 core K8s nodes

• Start scaling op every 200 seconds
• Because the machine has 32 cores, SQL Server thinks it has 32 cores

• Scale from 2 → 4 → 6 → 8 → 10 → 12 → 16 → 24

• Plot the average throughput during each segment

• 2 tests
• Scaling only (i.e. SQL activates 32 SqlOS schedulers)

• Coordination via affinity changes prior to scale

+31%

2/32

+30%+30%

Pod core limit
(full node
schedulers)

Perf change
when
schedulers
match cores
limit

4/32 6/32 8/32 10/32 12/32 16/32 24/32

+1% +6% -3% 0% 0%

Only 24 cores were
available for user workload

32 schedulers fighting for n < 32 cores
worth of time, results in lock waits,
priority inversions, etc.

Affinity tweaks especially useful when #
cores significantly lower than advertised
(ex: 2-6 cores out of 32)

2/32 4/32 6/32 8/32 10/32 12/32 16/32 24/32

IMPORTANT: Many
SQL instances are
often idle and could
be scaled down to 2-
4 cores. The longer
we can keep them
there, the longer we
have cores to use in
other places. But we
don’t want to lose
perf!

Scaling only. Overall avg txn/s: 3960

Coordination via affinity tweaks. Overall avg txn/s: 4102

Perf impact of restart-free core scaling with
Cassandra?

• For this customer provisioned
at 32 cores, we could scale
down by ~20 cores each night
• But what is impact to the

locks/buffers/threads/etc if the
DB thinks it has 32 cores but only
has 12?

container

nproc=32
cpu-shares=12

Testing perf impact of restart-free core scaling

Quick experiment with Cassandra:
• Ran tried matched/mismatched on a customer’s workload: pleasantly boring.

• Java’s public int availableProcessors()- apps must poll this explicitly
• Cassandra doesn’t, so we expected to see some mismatch due to threadpools, etc.

• However: to use the new cores, Cassandra needs to be aware of the max cores at startup.

• Some JVM-weirdness related to List of Processors…to be continued!

calls/second diff:
in the noise/nearly identical

calls/second diff:
in the noise/nearly identical

calls/second diff:
in the noise/nearly identical

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Runtime.html#availableProcessors()

What about memory??

• Resizing memory without a restart is
challenging, regardless of platform or
environment (Python/C/JVM/etc).

• Memory resizing likely requires
application changes.

• For now, restart/rolling-update when
memory needs to be resized.

Outline

• Mechanism
• Vertically scaling in-place

• Cassandra perf impacts?

• Policy
• CaaSPER: Proactive/Reactive algorithm for balancing price-perf trade-off

Pluggable
recommender

algorithms

controller

metrics
data

metrics

decisions.txt

reads writes

reads

triggers action

healthy?
Resources?
Do decision.

Scaler

NODE2
limit: 4 cores

NODE3
limit: 4 cores

NODE1
limit: 4 cores

scales

NODE1
limit: 3 cores

NODE2
limit: 3 cores

NODE3
limit: 3 cores

z

z

Vertical autoscaling: CaaSPER Algorithm

Vertically Autoscaling Monolithic

Applications with CaaSPER

(Pavlenko et al. SIGMOD 2024)

Why not K8s built-in Vertical Pod Autoscaler (VPA)?

Kubernetes VPA
Default Algo
Scales initially, then never again

• For billing, we scale only at whole-cores, with limits=requests

• In Kubernetes, requests and limits define guaranteed and burstable CPU
resource allocation for applications. Setting these equal ‘breaks’ VPA.

• Must consider customer preferences when scaling
• Most existing VPA tools are for optimal scheduling, not cost-perf preferences

CaaSPER
Right-sizes quickly and adapts

Red - CPU limit setting
Blue - actual CPU usage

Pluggable
recommender

algorithms

controller

metrics
data

metrics

decisions.txt

reads writes

reads

triggers action

healthy?
Resources?
Do decision.

Scaler

NODE2
limit: 4 cores

NODE3
limit: 4 cores

NODE1
limit: 4 cores

scales

NODE1
limit: 3 cores

NODE2
limit: 3 cores

NODE3
limit: 3 cores

z

z

Reactive:
Handle the initial Pod size
fit and adjust to spikes

Proactive:
Combine CaaSPER with existing
algorithms to handle cyclical/
predictable loads over time

Vertical auto-scaling approach:
2-part approach

Pluggable
recommender

algorithms

controller

metrics
data

metrics

decisions.txt

reads writes

reads

triggers action

healthy?
Resources?
Do decision.

Scaler

NODE2
limit: 4 cores

NODE3
limit: 4 cores

NODE1
limit: 4 cores

scales

NODE1
limit: 3 cores

NODE2
limit: 3 cores

NODE3
limit: 3 cores

z

z

Vertical auto-scaling: Part 1
Reactive/initial right-sizing with no data

Reactive:
Handle the initial Pod size
fit and adjust to spikes

Proactive:
Combine CaaSPER with existing
algorithms to handle cyclical/
predictable loads over time

Reactive CaaSPER

Doppler (prior work) provides initial SKU (#cores/#mem) selection
offline for SQL Server based on personalized price-perf curve

• We adapted this price-perf curve for our container scenario by monitoring the
change in slope over time, instead of focusing on a static price-perf curve for
migration

if < threshold scale downif > threshold, scale up

Doppler: Automated SKU Recommendation in Migrating SQL Workloads to the Cloud. PVLDB 15, 12 (2022).

Reactive CaaSPER

Steepness of price-perf curve determines how MUCH to scale

Pluggable
recommender

algorithms

controller

metrics
data

metrics

decisions.txt

reads writes

reads

triggers action

healthy?
Resources?
Do decision.

Scaler

NODE2
limit: 4 cores

NODE3
limit: 4 cores

NODE1
limit: 4 cores

scales

NODE1
limit: 3 cores

NODE2
limit: 3 cores

NODE3
limit: 3 cores

z

z

Reactive:
Handle the initial Pod size
fit and adjust to spikes

Proactive:
Combine CaaSPER with existing
algorithms to handle cyclical/
predictable loads over time

Vertical auto-scaling approach:
Pluggable proactive portion

Proactive:
Real cyclical workload + Time series

• Started by looking at simulated + real workload CPU traces

• Experimented with many different algorithms and data preprocessing for
prediction and measured throttling/fit/etc

• Naïve worked well for most of our scenarios, but can easily swap out

• Trade-off: complexity/robustness+debuggability

Combining Reactive + Proactive

Day 1 Day 2 Day 3

Reactive only

Red - CPU limit setting
Blue - actual CPU usage

Reactive + Proactive

Predictive
based on 1 day

Predictive
based on 2 days

Day 1 Day 2 Day 3

Predictive
scale-up but
with load
change,
reactive
CaaSPER takes
back over

CaaSPER parameters
Users can specify preferences on a slider, or we can autotune in our simulator (next):

Impact of our parameters:

More performant/More expensive Less performant/More cost-effectiveslider of tradeoffs

“slack”
parameter is
configurable.
Here: 15%

max scale
down= 10

• Slack (buffer between resources used and resources allocated)
• Max amount to auto-scale up/down
• How frequently to scale
• How much historical usage data to look at
• Balance between reactive vs proactive algorithm
• How early to be proactive (scale up 5 min early or 1 hour, etc)
• How frequently to scale
• Guardrails (ex: giant burst of traffic, how to behave)

max scale
down= 2

At this point: panicking.

• We had a paper deadline. We built
an awesome algorithm, but tuning
the 20+ parameters was challenging

• We needed to demonstrate our
autoscaling algorithm for about
30 7-day long experiments to run,
but we only had 3 functioning K8s
clusters, and 10 days.

• Enter: VASIM

VASIM: Vertical Autoscaling Simulator

VASIM replicates common components found in autoscaler architectures
and replays CPU traces (real and estimated) with tunable parameters

VASIM: Vertical Autoscaling Simulator Toolkit.

In IEEE International Conference on Data Engineering (ICDE 2024).

VASIM: Vertical Autoscaling Simulator

You need 3 things: CPU Data, Autoscaling Algo, Parameters

Simulating & Tuning parameters

When selecting parameters, we
must find the ideal balance
between:
• slack (resources wasted)
• insufficient CPU (throttling)

Outline

• Mechanism
• Vertically scaling in-place

• Cassandra perf impacts?

• Policy
• CaaSPER: Proactive/Reactive algorithm for balancing price-perf trade-off

• Code/demo: VASIM - Vertical Autoscaling SIMulator
• Try your own autoscaling algorithm!

• Autotuning: parameter tune your own algorithm

• How to get started with Cassandra

(Go to GitHub…)

https://github.com/microsoft/vasim

https://github.com/microsoft/vasim

VASIM web demo

• Our notebook
https://github.com/microsoft/vasim/blob/main/examples/using_vasim.ipynb

• Together with Cassandra
https://github.com/microsoft/vasim/tree/kasaur/e2e-livedemo/examples/cassandra

• And the web front-end
https://github.com/microsoft/vasim/tree/main/examples/streamlit

https://github.com/microsoft/vasim/blob/main/examples/using_vasim.ipynb
https://github.com/microsoft/vasim/blob/main/examples/using_vasim.ipynb
https://github.com/microsoft/vasim/tree/kasaur/e2e-livedemo/examples/cassandra
https://github.com/microsoft/vasim/tree/main/examples/streamlit

References

• Code repo: https://github.com/microsoft/vasim
• Simulator demo: examples -> streamlit

• Cassandra demo: examples -> cassandra

• Papers:
• VASIM: Vertical Autoscaling Simulator Toolkit Anna Pavlenko, Karla Saur, Yiwen Zhu, Brian

Kroth, Joyce Cahoon, Jesús Camacho Rodríguez. ICDE, 2024. [pdf]

• Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-
Service Performance Enhanced Resizing Algorithm for the Cloud Anna Pavlenko, Joyce
Cahoon, Yiwen Zhu, Brian Kroth, Michael Nelson, Andrew Carter, David Liao, Travis Wright,
Jesús Camacho Rodríguez, Karla Saur. SIGMOD, 2024. [pdf]

https://github.com/microsoft/vasim
https://www.microsoft.com/en-us/research/uploads/prod/2024/02/vasim_simulator.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2024/02/p28-pavlenko.pdf

	Slide 1
	Slide 2: About me
	Slide 3: About me
	Slide 4: Initial Project: Monolithic DB’s on K8s
	Slide 5: Vertically autoscaling with Cassandra
	Slide 6: Scenario: Vertically Scaling Generic DBs
	Slide 7: Generic Vertical Autoscaling (end-to-end)
	Slide 8: Outline
	Slide 9: Mechanism: scaling in-place
	Slide 10: Restarts hinder scaling nimbly in stateful workloads (even with containers!)
	Slide 11: In-place/no-restart scaling of CPUs
	Slide 12: What is the perf impact if the DB thinks it has n cores, but we actually give it m cores?
	Slide 13
	Slide 14: Perf impact of restart-free core scaling with Cassandra?
	Slide 15: Testing perf impact of restart-free core scaling
	Slide 16: What about memory??
	Slide 17: Outline
	Slide 18
	Slide 19: Why not K8s built-in Vertical Pod Autoscaler (VPA)?
	Slide 20: Vertical auto-scaling approach: 2-part approach
	Slide 21
	Slide 22: Reactive CaaSPER
	Slide 23: Reactive CaaSPER
	Slide 24: Vertical auto-scaling approach: Pluggable proactive portion
	Slide 25: Proactive: Real cyclical workload + Time series
	Slide 26: Combining Reactive + Proactive
	Slide 27: CaaSPER parameters
	Slide 28: At this point: panicking.
	Slide 29: VASIM: Vertical Autoscaling Simulator
	Slide 30: VASIM: Vertical Autoscaling Simulator
	Slide 31: Simulating & Tuning parameters
	Slide 32: Outline
	Slide 33: (Go to GitHub…)
	Slide 34: VASIM web demo
	Slide 35: References

