
BEGIN TRANSACTION
Apache Cassandra as a Transactional Database
C. Scott Andreas, Apple Inc.

Outline

– Apache Cassandra Today

– Transactional Capabilities Coming in Apache Cassandra

– Demo Application

– Future Directions

Apache Cassandra Today

Capability Description Status

Programmatic DDL Ability to safely use tools like Liquibase to programmatically
manage schema changes instead of executing by hand. ❌

Safe Drop /
Recreate Table Ability to recreate tables with same name after dropping. ❌

Transactions Across
Partitions / Tables Ability to transact across different partition keys in a table. ❌

Fast Multi-Region
Transactions

Transacting across regions in 1x round trip.
(Minimum write transaction: 2x WAN latency; 4x for paxos_v1) ❌

Referential Integrity Ability to enforce relationships and data integrity constraints
across tables via transactional capability. ❌

Feature-Rich
Secondary Indexes

Ability to define an index on a column and perform prefix
queries over SSTable-attached data structures. ❌

Foundations

Transactional Metadata Serializable log of all changes to cluster config:
membership, ring ownership, schema, and more.

Distributed
Transactions

State of the art, novel Paxos protocol powering
transactions across keys and tables at 1xRTT.

Rich
Features

SAI: New high-performance index in Cassandra.
Materialized views possible via transactions.

Demo
A Toy Filesystem

– Feature: Users should be able to arrange files in folders and search folders by file type.
– Constraints: All files must belong to a user and a folder. All folders must belong to a user.
– Approach: Three tables: Users, Folders, and Files.

Demo Recap
Distributed Transactions

– Multi-Table Transactions: Atomic modification of records across tables
– Strict Serializable Reads: Strongest isolation level available to tables by default.
– Referential Integrity: Enforcement of relationship of entities across tables.
– Transactional DDL: Safe, rapid modification of tables; ability to drop/recreate.

Referential Integrity
Semi-Relational Features in Cassandra

Referential integrity enforces relationships between records across tables.
E.g., “All files must be in a valid folder. All folders must belong to an active user.”

Distributed transactions enable enforcement of these relationships in Cassandra.

Transactional Schema
Managing Cluster State in Cassandra

– Epochs ensure all replicas agree on cluster configuration when serving a request.
– All changes to cluster config pass through a serialized log and increment the epoch.
– Epochs enable safe and rapid changes to cluster state via Paxos.

Transactional Schema
Transactional DDL is safer DDL

– Keyspaces and Tables in Cassandra are now versioned by epoch.
– Impossible for schema conflicts to emerge within a cluster.
– Impossible for duplicate table IDs to emerge for same CREATE TABLE statement.
– Safe to drop and recreate tables with same names – C* will recognize the difference.

Transacting Across Tables and Partitions
Distributed Transactions

Transactions make data modeling simpler.
Think in terms of your application’s data model. No complex schemes for maintaining consistency.

Transactions make building applications on Cassandra safer.

Fast, Multi-Region Transactions

Scale Isolation Multi
Cloud Leaderless

Single Key
Round-Trips

Multi Key
Round-Trips

Local Remote Local Remote

Read Write Read Write Read Write Read Write

CockroachDB Terabytes Serializable ✓ ✗ 1 1 2 2 1 1 2-3 2-3

DynamoDB Petabytes Serializable ✗ ✗ 1 1 2 2 1 1 NA NA

Spanner Petabytes Strict
Serializable ✗ ✗ 0.5 1 0.5 2 0.5 1 0.5 2-3

Cassandra (2013) Petabytes Linearizable ✓ ✓ 2 4 2 4 NA NA NA NA

Cassandra (2022) Petabytes Linearizable ✓ ✓ 1 2 1 2 NA NA NA NA

Cassandra / Accord Petabytes Strict
Serializable ✓ ✓ 1 1 1 1 1 1 1 1

Secondary Indexes
Storage-Attached indexes (SAI)

Work best as a partition-restricted index.
Ensures that your queries contact only a single replica set and don’t scatter-gather.

Efficient storage mechanism.
Postings-list design more efficient than any other C* secondary index mechanism.

Feature-rich
AND/OR logic, IN logic, numeric ranges, collections CONTAINS, optional case-sensitivity.

Anticipated in next iteration
Prefix queries (LIKE) and OR queries. Major enhancement to Cassandra UX.

Apache Cassandra Today

Capability Description Status

Programmatic DDL Ability to safely use tools like Liquibase to programmatically
manage schema changes instead of executing by hand. ❌

Safe Drop /
Recreate Table Ability to recreate tables with same name after dropping. ❌

Transactions Across
Partitions / Tables Ability to transact across different partition keys in a table. ❌

Fast Multi-Region
Transactions

Transacting across regions in 1x round trip.
(Minimum write transaction: 2x WAN latency; 4x for paxos_v1) ❌

Referential Integrity Ability to enforce relationships and data integrity constraints
across tables via transactional capability. ❌

Feature-Rich
Secondary Indexes

Ability to define an index on a column and perform prefix
queries over SSTable-attached data structures. ❌

Apache Cassandra 5.1+

Capability Description Status

Programmatic DDL Ability to safely use tools like Liquibase to programmatically
manage schema changes instead of executing by hand. ✅

Safe Drop /
Recreate Table Ability to recreate tables with same name after dropping. ✅

Transactions Across
Partitions / Tables Ability to transact across different partition keys in a table. ✅

Fast Multi-Region
Transactions

Transacting across regions in 1x round trip.
(Minimum write transaction: 2x WAN latency; 4x for paxos_v1) ✅

Referential Integrity Ability to enforce relationships and data integrity constraints
across tables via transactional capability. ✅

Feature-Rich
Secondary Indexes

Ability to define an index on a column and perform prefix
queries over SSTable-attached data structures. ✅

Behind the Scenes

– Accord: Paxos-based distributed
transaction protocol

– Leaderless transactions can be
initiated from any region.

– Transactions execute in 1x round-trip
in common case (3x fallback).

– Validated via formal proof, research
collaboration, and simulation.

Transactional Tables
CREATE TABLE demo.tbl(col text PRIMARY KEY (col))  
WITH TRANSACTIONAL_MODE = ‘xxx’;

Mode Behavior Vibe

“off” Distributed transactions via Accord disabled (paxos_v1 and paxos_v2 supported). 🥺

“unsafe" Permit writes via standard StorageProxy write path. Can result in multiple outcomes
computed for transactions depending on data written via non-SERIAL writes. 😱

“unsafe_writes” Allows non-serial writes, but still forces blocking read repair via Accord. Safe to
perform non-serial reads of Accord data, but unsafe to write data Accord may read. 😬

“mixed_reads” Executes writes via Accord. Commits at provided consistency level to enable data to
be read via non-serial reads. Safe to read/write data Accord will write. 🙂

“full" Full serializable semantics for all queries. Consistency levels do not apply. 🤩

Transaction Syntax

BEGIN TRANSACTION
 LET existing_user = (SELECT user FROM demo.users WHERE user = ‘demo@example.com');

 SELECT user FROM demo.users WHERE user = ‘demo@example.com’;

 IF existing_user IS NULL THEN
 INSERT INTO demo.users (user, first_name, last_name)
 VALUES (‘demo@example.com', 'Scott', 'Andreas');
 INSERT INTO demo.folders (user, folder_name)
 VALUES ('demo@example.com', 'Home');
 INSERT INTO demo.files (user, file_name, folder_name, file_type, contents)
 VALUES (‘demo@example.com', 'README', 'Home', 'txt', textAsBlob('Welcome...'));
 END IF
COMMIT TRANSACTION;

Initializes a transaction block –––
Binds results of a query to a variable –––

Defines return value (pre-execution) –––

Predicate that tests whether to apply –––
Atomic batch of mutations across tables. –––

Conclude predicate. –––
Concludes a transaction block. –––

Overview

Composable with Features
Transactions and Secondary Indexes (SAI)

Transactions and Secondary Indexes are composable with Accord.
– In transactional_mode=‘full’, all reads and writes pass through the transactional subsystem.

ACID transactional guarantees apply to secondary indexes.
– On write path, transactions mutate index and guarantee atomic visibility to transactional reads.
– On read path, transaction protocol ensures execution happens-after all transactions with conflicting
dependencies have committed.

Composable with Features
Materialized Views

Distributed Transactions enable query-level construction of materialized views.
Materialized views can be maintained via transactional inserts on the write path.

Future Directions
Where to from here?

Improving ergonomics of whether a transaction was applied.
It’s inconvenient to need to re-select the predicate you’re testing.

Multi-result select statements.
It would be useful to return an array of resultsets from selects in a transaction.

Strict-Serializable Snapshots
Accord may enable strict-serializable snapshots via an exclusive sync point.

Snapshot Isolation
Adding record versioning may enable Cassandra to support proper MVCC.

Foreign Key Constraints
Bringing referential integrity constraints into database schema natively.

Development Status
What’s Ahead?

GitHub Branch: cep-15-accord
https://github.com/apache/cassandra/tree/cep-15-accord

Journal: Startup / Replay Complete
Write-ahead log for Accord transactions providing durability across process restarts.

Testing + Validation of Implementation
Advancing from burn tests to full-database simulation.

Performance
Baseline target: “As inexpensive as paxos_v2 to execute, with half the round trips.”

Merging to Trunk
Anticipate merging to trunk in 1 - 2 months. Request for review + involvement on mailing list.

BEGIN TRANSACTION
Apache Cassandra as a Transactional Database
C. Scott Andreas, Apple Inc.

