
Secure Apache Spark on Kubernetes with 
Apache Ranger

Chaoran Yu & Claudia Sun

NOT A CONTRIBUTION



• Apache Spark on Kubernetes

• Security Challenges for a Apache Spark-based Batch Platform

• Apache Ranger Plugin for Queue Authorization

• Apache Ranger Plugin for Spark SQL

• History

• HMS + Hive Table

• IRC + Iceberg Table

• Possible Next Steps

Agenda



• Apache Spark

• De-facto standard for batch data processing and analytics

• Running Apache Spark in the Cloud

• Apache Spark on Kubernetes mode

• Ease of use, multi-tenancy, resource management, security

Apache Spark on Kubernetes



Batch Processing Gateway

https://github.com/apple/batch-processing-gateway

https://github.com/apple/batch-processing-gateway


• Authorization

• Who is authorized to perform actions on a certain API endpoint (e.g. submit, 
status, log)

• Who is authorized to access a certain dataset (i.e. data access control)

• Authentication

Security Challenges



API Authorization



API Authorization Architecture

https://github.com/apple/batch-processing-gateway



Apache Ranger

https://ranger.apache.org/



Architecture



Apache Spark Queues Authorization with Apache Ranger
Policy Creation



Apache Spark Queue Authorization with Ranger
Apache Solr Auditor

All the audits related to any Ranger plugin will be synced to Solr and will be visible here on the UI



Role-based access control (RBAC), Attribute-based access control (ABAC), and
custom data resources/types in Ranger.

• Apache Spark Queues 

• Apache Hive Tables 

• Apache Iceberg Tables 

Dataset Authorization



Apache Ranger Spark Plugin Integration
History

• Started as a small solo-dev OSS project

• https://github.com/yaooqinn/spark-ranger

• Author really tried to get it into Apache Ranger mainline (2018) ❌

• https://issues.apache.org/jira/browse/RANGER-2128

• Integrated with Apache Submarine project (2020)

https://github.com/yaooqinn/spark-ranger
https://issues.apache.org/jira/browse/RANGER-2128


Apache Ranger Spark Plugin Integration
History Cont.

• Retired from Apache Submarine Nov. 2021 😔

• https://github.com/apache/submarine/pull/796

• Moving to Apache Kyuubi Project as a Spark security module 🤗  But no 
Iceberg and Datasource V2 support😔

• Add Data Source V2 support, specifically for Iceberg support in Ranger 
Plugin for many of the core Spark actions. Supports Spark 3.2, 3.3 & 
3.4(currently) 

https://github.com/apache/submarine/pull/796


Apache Ranger Iceberg Service Creation

• Ranger Service Definition
{ "name": "Iceberg",  
  "resources": [ {

"itemId": 1, 
"name": "Table",  
"type": "string",
"matcher":"org.apache.ranger.plugin.resourcematcher.RangerDefaultResourceMatcher", 
"accessTypes":["CREATE", "UPDATE", "INSERT", "DELETE"...]
}, ...]



Apache Ranger Spark Plugin Integration

Ranger Spark Plugin supports three levels of access control: 

• Namespace/Database

• Table

• Column



• builth

Apache Ranger Spark Plugin Integration
Catalyst Optimizer



• Hive Meta Store + Hive Tables
• sparkSession.sessionState.catalog

• Simple plan for a count on a Hive table

Aggregate [value#153], [sum(cast(key#152 as bigint)) AS k1#150L, value#153 AS 
v1#151]
 +- HiveTableRelation [`default`.`src`, parquet, Data Cols: [key#152, value#153], 
Partition Cols: []]

Simplified further as Aggregate->Filter->HiveTableRelation

Apache Ranger Plugin Integration



• The Ranger Spark plugin injects itself via RangerSparkAuthzExtension API into Catalyst's plan 
optimizer pipeline

• It evaluates the Plan Nodes (Aggregate, Filter, HiveTableRelation, etc.) and maps them to 
Ranger actions (QUERY, UPDATE, ALTER, etc.)

• If policy permits all extracted Ranger actions, the query is allowed to continue.

• Otherwise, you get

21/12/03 10:07:50 ERROR SparkRangerAuthorizationExtension: *** Permission denied: user 
[alice] does not have [SELECT] privilege on [default/src/key] ***

Apache Ranger Plugin Integration



• Iceberg REST Catalog + Iceberg Tables
Instead of reading from Spark Session Catalog, Ranger Plugin needs to cope with Spark 
SQL Catalog to get catalog information. 

• sparkSession.sessionState.catalogManager.currentCatalog

This is due to different Catalog Mechanism. Iceberg does not use the Hive Metastore for 
storing its metadata. Instead, it uses its own catalog, which can be accessed through a 
REST API or other mechanisms.

Apache Ranger Plugin Integration



Apache Iceberg tables are designed to work specifically with the DataSource V2 API in 
Spark, which was introduced in Spark 2.3

Examples:

ShowTables Command’s logical plan in DataSource V1:
+- ShowTablesCommand default, [namespace#16, tableName#17, isTemporary#18], false

ShowTables Command’s logical plan in DataSource V2:
+- ShowTables [namespace#16, tableName#17, isTemporary#18]

+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]

Apache Ranger Plugin Integration



• Unified policy support (think: Apache Spark, Trino, et al. share same policy 
descriptor from Apache Ranger)

• Security hardening (JVM agent, honoring policy against bare file paths, strong 
principal identity verification)

Possible Next Steps



Thanks For Attending 
Q&A


