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PRODUCT SEARCH AT AMAZON
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Top-N products shown to customers

• Lexical + Semantic matching, filtering and ranking stages

• Query-time filters such as availability, deliverability, brand-
preference, etc. are applied

• Multi-stage ranking models are used, which have access to 
arbitrary runtime and indexed features

• Cosine-similarity scores from semantic matching have a 
limited role in the final ranking of products



VECTOR SEARCH

• Vectors are points in an N-dimensional space, and are usually 
represented as a list of integer or float values.

• Machine learning models typically represent text, image, and 
videos as vectors, allowing us to easily find similar text, images 
etc. using vector-similarity search.

• The following similarity measures are commonly used:

• Euclidean Distance (d)

• Cosine-Similarity (Ɵ)

• Inner-Product (IP = a * b * cosƟ)
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TYPES OF VECTOR SEARCH

Radius Based Vector SearchK-Nearest Neighbor (KNN) Vector Search

1
3

2 2

3
1

4



CONSIDERATIONS

Reduce irrelevant results
• Query vector present in a sparse part of the space

• Obscure query

• Relevant documents not present in the catalog (or not indexed for 
vector search)

• Show fewer results instead of unrelated ones

• Minimum similarity threshold with the query

• Unnecessary computations in KNN queries where some of top K 
results lie outside similarity threshold



CONSIDERATIONS

Multiple matching sources + result rescoring
• Matching sources like lexical terms, behavioral data, more than one 

vector field, etc.

• Final rescoring has a larger feature set than semantic model

• Potential of missed results because hits outside top K (but still similar 
enough to the query) are valid candidates for matching

K-Nearest Neighbor (KNN) Vector Search



CONSIDERATIONS

Multiple matching sources + result rescoring
• Matching sources like lexical terms, behavioral data, more than one 

vector field, etc.

• Final rescoring has a larger feature set than semantic model

• Reduced potential of missed results because all hits similar enough to 
the query are considered as candidates for matching

Radius Based Vector Search



CONSIDERATIONS

Query-time filters
• Like availability, delivery speed, brand, etc.

• The K-Nearest Neighbors of the query may not satisfy these 
constraints

• Lucene solves for this using pre-filtering, but comes at a cost

• Collect all docs matching the constraints in a set

• Only match on these documents during retrieval

• Even if this set is cached and re-used across queries, becomes cost 
inhibitive due to heap usage with a large number of unique filters

K-Nearest Neighbor (KNN) Vector Search



CONSIDERATIONS

Query-time filters
• Like availability, delivery speed, brand, etc.

• All vectors similar enough to the query are already matched

• No explicit need for pre-filtering, rely on post-filtering

Radius Based Vector Search



CONSIDERATIONS

Distributed nature
• Lucene has independently searchable sub-indexes called 

segments, and vectors are spread across them

• Segment-level top K vectors need to be collected at a single 
place to determine results

• Caveats like custom parallelism and non-cacheable

Lucene Index
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K-Nearest Neighbor (KNN) Vector Search



CONSIDERATIONS

Distributed nature
• Lucene has independently searchable sub-indexes called 

segments, and vectors are spread across them

• Each document is independently evaluated as a hit (without 
needing scores of other documents)

• Segment-level results are additive and need not be collected at a 
single place

• Simpler query implementation and cacheable!

Lucene Index

Lucene 
Segment

Lucene 
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Lucene 
Segment

Scorers for each segment

Radius Based Vector Search



LUCENE IMPLEMENTATION

Hierarchical Navigable Small World (HNSW) 
Graphs (https://arxiv.org/pdf/1603.09320)

• Already implemented since Lucene 9.1 (LUCENE-9004, 
LUCENE-10054) to perform KNN search

• Relies on document-document similarity to connect each 
vector to its closest (and diverse) neighbors

• Documents are spread across multiple layers, with each layer 
having an exponentially increasing superset of documents of 
the layer above

• Upper layers provide a suitable entry point for actual search 
in the last layer

• A priority queue of K results is maintained in the last layer, 
and search stops when the best available candidate cannot 
replace any collected result

Image Source

https://arxiv.org/pdf/1603.09320
https://issues.apache.org/jira/browse/LUCENE-9004
https://issues.apache.org/jira/browse/LUCENE-10054
https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37


LUCENE IMPLEMENTATION

Simulating a Radius-based vector search
• Large K with post-filtering?

• Incurs additional latency

• Missed results if not large enough

• Predictive query-level K?

• Another layer of approximation + complexity

K-Nearest Neighbor (KNN) Vector Search



LUCENE IMPLEMENTATION

Algorithm
• Released in Lucene 9.10 (GH#12679)

• Change graph traversal and result collection criteria to be radius-based 
instead of count-based

• HNSW graphs are valuable

• Minimally invasive

• Introduces two parameters, traversalSimilarity and resultSimilarity

• Traverse all nodes with similarity score higher than traversalSimilarity

• Collect all traversed nodes with similarity score higher than 
resultSimilarity

• Clause to continue traversal as long as better scoring nodes are available 
(handle edge cases where entry node lies outside traversalSimilarity)

https://github.com/apache/lucene/pull/12679


LUCENE IMPLEMENTATION

Benefits
• Exists as a tunable parameter to reach results where some node along 

the path is lower scoring than resultSimilarity (recall v/s QPS)

• Number of nodes traversed and collected is locality-sensitive (more 
nodes in dense parts of the graph, and vice versa)

• No need to maintain priority queue of results for highest-scoring top K

• Graph search can be performed in a more appropriate place in the 
Lucene query flow

• Cacheable!



PARAMETER TUNING
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*tr = traversal similarity for Cohere vectors



PERFORMANCE COMPARISON

• Number of documents above a threshold has been used as a 
baseline for recall calculation

• As a consequence, low values of top K in the KNN setup result in 
very low recall values

• Points plotted in the charts are for varying values of top K for KNN, 
and varying values of traversalSimilarity for RBVS

• RBVS is capable of providing very high recall without 
compromising on QPS for applications which require to find all 
documents above a given threshold
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TIME COMPLEXITY

• In brute-force (or exact) search, doubling the number of 
documents leads to doubling in the number of matches for a 
fixed threshold

• Time complexity is dictated by the number of nodes visited 
during graph search, which has an upper bound of actual 
number of vectors with a score above traversal-threshold

• In actual simulations for RBVS, we found the number of nodes 
traversed, and thus latency, increases linearly with increase in 
number of documents

Total number of documents
• 1000
•   500
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