(%) CONFLUENT

The Ins and Outs of Writing Kafka KIPs

Lucia Cerchie
Developer Advocate

LinkedIn https://www.linkedin.com/in/luciacerchie/

Matthias J. Sax

Software Engineer | Apache Kafka Committer and PMC member
Twitter/X @MatthiasJSax

What is a KIP?

. KIP: Kafka Improvement Proposal
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals

. Design document (or one-pager) about any major change in Kafka

What is considered a "major change" that needs a KIP?

Any of the following should be considered a major change:

+ Any major new feature, subsystem, or piece of functionality
* Any change that impacts the public interfaces of the project

What are the "public interfaces"” of the project?
All of the following are public interfaces that people build around:

* Binary log format
+ The network protocol and api behavior
« Any class for which the build generates Javadoc. This includes (but is not limited to; look for javadoc {} sectionsin build.gradle for the complete list):
o orgfapache/kafka/common/serialization
o org/apache/kafkajcommon
o orgflapache
rg/apache/kafka/clients/producer
o orgfapache/kafka/clients/consumer (eventually, once stable)
» Configuration, especially client configuration
Monitoring
Command line tools and arguments

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals

What is the goal of a KIP?

Standard software engineering practices to
« Ensure good design

« Design before you implement

Foster collaboration within the community
Technical documentation!

Project governance

The KIP Process

Design a solution and write the KIP itself

Start a discussion thread on the dev mailing list
Start a vote thread on the dev mailing list
Implement the KIP

Celebrate your contribution!

The Structure of a KIP &

https://cwiki.apache.org/confluence/display/KAFKA/KIP-Template

Meta information

Motivation

Public Interfaces

Proposed Changes

Compatibility, Deprecation, and Migration Plan
Test Plan

Documentation

Rejected Alternatives

https://cwiki.apache.org/confluence/display/KAFKA/KIP-Template

f I—!I——-' ”
- - p— ‘
(
\ \ ‘ L " l‘ |
£ > 5 |
0 ’ | / 4 }'f»»
7 | y

Hands on Experience

KIP-941: Allow range queries
to accept null bounds

KIP-941: Range queries to accept null lower and upper bounds

Created by Lucia Cerchie, last modified on Aug 08, 2023

s Status
* Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status

Current state: ["Adopted”]
Discussion thread: https://lists.apache.org/thread/wnn2qgrb7vglw11bdm?2cdlkm1430b75zc
JIRA: KAFKA—15126 - Change range queries to accept null lower and upper bounds RESOLVED

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy
fast).

Motivation

Within the RangeQuery class in the Interactive Query API (which allows you to leverage the state of your application
from outside your application), there are methods for getting the upper and lower bounds. When web client
requests come in with query params (which become those bounds), it's common for those params to be null. We
want developers to just be able to pass in the upper/lower bounds if they want instead of implementing their own
logic to avoid getting the whole range.

An example of the logic they can avoid after this KIP is implemented is below:

private RangeQuery<String, ValueAndTimestamp<StockTransactionAggregation>> createRange(
if (isBlank(lower) && isBlank (upper)) {
return RangeQuery.withNoBounds () ;
} else if (!isBlank(lower) && isBlank (upper)) {
return RangeQuery.withLowerBound (lower) ;
} else if (isBlank(lower) && !isBlank (upper)) {

https://cwiki.apache.org/confluence/display/KAFKA/KIP-941%3A+Range+queries+to+accept+null+lower+and+upper+bounds
https://cwiki.apache.org/confluence/display/KAFKA/KIP-941%3A+Range+queries+to+accept+null+lower+and+upper+bounds
https://cwiki.apache.org/confluence/display/KAFKA/KIP-941%3A+Range+queries+to+accept+null+lower+and+upper+bounds
https://cwiki.apache.org/confluence/display/KAFKA/KIP-941%3A+Range+queries+to+accept+null+lower+and+upper+bounds

KIP-714: Client metrics
O bS e r Va bi I i ty Proposed Changes

Overview

This feature is made up of the following components:

+ GetTelemetrySubscriptions RPC - protocol request used by the client to acquire its initial Client instance ID
and to continually retrieve updated metrics subscriptions.
PushTelemetry RPC - protocol request used by the client to push metrics to any broker it is connected to.
Standard and required metrics - a set of standardized metrics that all supporting clients should provide.
AdminAPI config - the AdminAPI configuration interface with a new CLIENT_METRICS resource type is
used to manage metrics subscriptions.
Client metrics plugin [extending the MetricsReporter interface - a broker plugin interface that performs
something meaningful with the metrics. This plugin will typically forward the metrics to a time-series
database. It is recommended that any broker-side processing is kept to a minimum for scalability and
performance reasons.

Add/delete/ist
metrics subscriptions

External

Metrics plugin Admin API
interface request handlers

CLIENT_METRICS CLIENT_METRICS config

subscription cache entries are cached by
If the pushed metrics matches a subscription all brokers
the metrics are forwarded to the metrics plugin

Subscription state

Metrics subscription (Subscriptionid, metrics to send, interval)

State is maintained for clients == is propagated back to the client

that match entries in the subscription
cache: subscribed metrics, interval, etc.

PushTelemetryRequest efTelemetrySubscriptions efTele metrySubscriptions
efTelemetrySubscriptions Metrics subscription
Request state
OpenTeleme! -) N
Saccondng o the sule gmeraeu
according to the subscription's R
interval

https://cwiki.apache.org/confluence/display/KAFKA/KIP-714%3A+Client+metrics+and+observability
https://cwiki.apache.org/confluence/display/KAFKA/KIP-714%3A+Client+metrics+and+observability
https://cwiki.apache.org/confluence/display/KAFKA/KIP-714%3A+Client+metrics+and+observability
https://cwiki.apache.org/confluence/display/KAFKA/KIP-714%3A+Client+metrics+and+observability

KIP-618: Exactly-Once
Support for Source
Connectors

Rolling upgrade(s)
At most two rolling upgrades will be required to enable exactly-once source support on a Connect cluster.

The first rolling upgrade will be to upgrade every worker to a version of Connect that can provide exactly-once
source support, and to set exactly.once.source.support topreparing.

The second rolling upgrade will be to actually enable exactly-once source support on each worker (by
setting exactly.once.source.support toenabled).

Two upgrades will be required in order to ensure that the internal fencing endpoint is available on every worker
before it is required by any of them, and that no non-leader workers are able to write to the config topic during the
upgrade.

Downgrade

Two kinds of downgrade are possible. Exactly-once support for a cluster can be disabled by setting
exactly.once.source.support toeitherdisabled or preparing for workers in the cluster (a "soft”
downgrade), or workers can be reverted to use older versions of the Connect framework that does not support
exactly-once sources at all (a “hard” downgrade).

Soft downgrade

Soft downgrades should be possible via a cluster roll, where each worker is shut down, its configuration is altered
to disable exactly-once source support, and then it is restarted. During the process, all connectors and their tasks
should continue to run and process data, thanks to the same logic that makes a rolling upgrade possible.

Hard downgrade
Offsets accuracy

Because source task offsets on upgraded workers are still written to the worker's global offsets topic, even if a
downgraded worker does not support per-connector offsets topics, it can still pick up on relatively-recent source
offsets for its connectors. Some of these offsets may be out-of-date or older than the ones in the connector’s
separate offsets topic, but the only consequence of this would be duplicate writes by the connector, which will be
possible on any cluster without exactly-once support enabled. Without any writes to the global offsets topic, all
records processed by a connector since a switch to a dedicated offsets topic would be re-processed after the
downgrade and would likely result in a flood of duplicates. While technically permissible given that the user in this
case will have knowingly switched to a version of the Connect framework that doesn't support exactly-once source
connectors (and is therefore susceptible to duplicate delivery of records), the user experience in this case could be
quite bad, so a little extra effort on the part of Connect to significantly reduce the fallout of downgrades in this case
is warranted.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-618%3A+Exactly-Once+Support+for+Source+Connectors
https://cwiki.apache.org/confluence/display/KAFKA/KIP-618%3A+Exactly-Once+Support+for+Source+Connectors
https://cwiki.apache.org/confluence/display/KAFKA/KIP-618%3A+Exactly-Once+Support+for+Source+Connectors

KIP-962: Relax null-key
r eq U i remen t i n K afk a St reams Compatibility, Deprecation, and Migration Plan

Keeping the old behavior

Users who want to keep the current behavior can prepend a .filter() operator to the aforementioned operators and
filter accordingly.

Examples

//left join Kstream-Kstream

leftStream
.filter((key, value) —> key != null)
.leftJoin(rightStream, (lv, rv) —> join(1lv, rv), windows);

//outer join Kstream-Kstream

rightStream
.filter((key, value) —> key !'= null);

leftStream
.filter((key, value) —> key != null)
.outerJoin(rightStream, (lv, rv) -> join(lv, rv), windows);

//left-foreign-key join Ktable-Ktable
Function<String, String> foreignKeyExtractor = leftValue —> ...
leftTable
.filter((key, value) —> foreignKeyExtractor.apply(value) != null)
. leftJoin(rightTable, foreignKeyExtractor, (lv, rv) — join(lv, rv), Named.as("left-fore

//left join Kstream-Ktable

leftStream
.filter((key, value) —> key != null)
.leftloin(ktable, (k, lv, rv) —> join(lv, rv));

//left join KStream-GlobalTable
KeyValueMapper<String, String, String> keyValueMapper = (k, v) —> ...;
leftStream

.filter((key, value) —> keyValueMapper.apply(key,value) != null)

. leftloin(globalTable, keyValueMapper, (lv, rv) —> join(lv, rv));

https://cwiki.apache.org/confluence/display/KAFKA/KIP-962%3A+Relax+non-null+key+requirement+in+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-962%3A+Relax+non-null+key+requirement+in+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-962%3A+Relax+non-null+key+requirement+in+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-962%3A+Relax+non-null+key+requirement+in+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-962%3A+Relax+non-null+key+requirement+in+Kafka+Streams

A A
2 L «\
P
/
= /
e 2 , |
e =il | ¢ i
g R , L 4
 a S S < | |
e bl |
r = U\ ¥
e 0 ‘ m

\ P\ W) A e

Formalities

11

The KIP Process

Embraces the ASF motto “if it did not happen on the mailing list, it did not happen”

”"DISCUSS” thread for a KIP to collect feedback, answer question, discuss tradeoffs, and find
consensus

« Anything from “this is so trivial we skip it” to multiple months
« Most KIPs take a few weeks

“VOTE” thread to formally approve a KIP
« Vote must be open at least 72h
« Lazy majority vote
« Need at least three (binding) +1, ie, three committers need to approve

« Non-binding community votes are still very important!

12

Lessons Learned

« Overall very well received process
« Other ASF projects adopted it, too

« For smaller changes, sometimes a little bit
“annoying”

« Great way to teach new contributors
« Alot of people read(!) KIPs

« KIP go into the release notes: great way to
highlight important changes

« Challenges:

« Make sure all KIPs get attention and guidance
by committers

* Noclean “reject” process (lots of zombie KIPs)

13

(%) CONFLUENT

The Ins and Outs of Writing Kafka KIPs

Lucia Cerchie
Developer Advocate

LinkedIn https://www.linkedin.com/in/luciacerchie/

Matthias J. Sax

Software Engineer | Apache Kafka Committer and PMC member
Twitter/X @MatthiasJSax

	Slide 1: The Ins and Outs of Writing Kafka KIPs
	Slide 2: What is a KIP?
	Slide 3: What is the goal of a KIP?
	Slide 4: The KIP Process
	Slide 5: The Structure of a KIP
	Slide 6: Hands on Experience
	Slide 7: KIP-941: Allow range queries to accept null bounds
	Slide 8: KIP-714: Client metrics observability
	Slide 9: KIP-618: Exactly-Once Support for Source Connectors
	Slide 10: KIP-962: Relax null-key requirement in Kafka Streams
	Slide 11: Formalities
	Slide 12: The KIP Process
	Slide 13: Lessons Learned
	Slide 14: The Ins and Outs of Writing Kafka KIPs

