
Your Project’s Website is BAD

Ethan Rose, Apache Ozone PMC Member

But it Doesn’t Have to Be :)



This is Apache Ozone’s Current 
Website











● Appearance
○ People DO judge a book by its cover
○ They expect Ozone to run about as well as the website looks

● Content
○ Docs are disorganized and lacking
○ No continuity between Ozone docs and Wiki

What’s Wrong?
A bad website is bad for community adoption



● Docs layout does not scale with new content
● Updates are ad-hoc, not part of project planning
● No CI
● Poor choice of frameworks

How Did We Get Here?
The website is not run like the project



What Can We Do About It?

Run the website like the project!



● Tools that look and function well out of the box
○ Most Ozone devs are not web devs

● Extensible Layout
○ Keep docs organized now and in the future
○ Provide a home for stray Wiki content

● Minimal contribution friction
○ Only markdown required
○ Re-use familiar tools

Gathering Requirements



● ASF has hundreds of projects, each with an open source website and 
compatibly licensed code!

● Choose a few reference sites with aspects you like:
○ Homepage
○ Search
○ Navigation
○ Docs Layout

Gathering Inspiration



1. Create design doc outlining the proposal and exit criteria
2. Send to dev@ mailing list for community feedback and engagement
3. Divide into Jira subtasks
4. Create feature branch from ozone-site repo
5. Get to work!

HDDS-9225: Apache Ozone Website v2
A complete overhaul of Ozone’s current website



● Current Ozone website uses split model:
○ Docs are with Ozone code
○ Rest of website is in ozone-site
○ Confluence Ozone Wiki is completely separate

● Goal: Unify website source for a unified website appearance
○ Everything goes in ozone-site repo

1. Framework
Where to put the code?



● MIT licensed, maintained by Meta open source
● Good docs on how to use it
● Markdown, extensible with JS
● Used by many ASF projects
● Nice default appearance and functionality out of the box
● Builds with standard Node tools

1. Framework
Static Site Generator: Docusaurus



● Already used in Recon: Ozone’s observability server
● Chosen over similar alternatives like NPM and Yarn

1. Framework
Package Manager: PNPM



THIS little logo is so simple but so complicated…

1. Framework
Favicon



● Used for webpage previews when links are shared on social media or 
messaging apps

● A little graphic design goes a long way

1. Framework
Social Card



● Supported for Apache projects
● Results are published to analytics.apache.org
● See where and what users are accessing

1. Framework
Analytics: Matomo



● Indexes your website for users to search
● Supported by Docusaurus with a plugin
● Used by many ASF projects

1. Framework
Search: Algolia



Personas: Everyone reading the docs is some combination of:

○ User: Interacts with Ozone through a client and API
○ Administrator: Interacts with Ozone servers directly
○ Developer: Interacts with Ozone by building, modifying, running

2. Docs Outline
Who actually reads docs???

A reader should be able to easily avoid docs which do not pertain to them
BUT

We should not duplicate documentation among sections



Least technical

2. Docs Outline
Don’t scare people (yet)

Most technical



Everyone: What are we looking at?

2. Docs Outline
Overview



2. Docs Outline
Quick Start

Everyone: Docs are boring, let me try it



2. Docs Outline
Core Concepts

Everyone: Ozone basics for all



2. Docs Outline
User Guide

Users: I use Ozone clients or run 
workloads against Ozone



2. Docs Outline
Administrator Guide

Admins: I manage Ozone 
cluster(s) for users



2. Docs Outline
Troubleshooting

Everyone: SOS click here!



2. Docs Outline
System Internals

Everyone: I’m curious about 
how Ozone works, beyond what 
is necessary to run it 



2. Docs Outline
Developer Guide

Developers: I want to contribute 
to Ozone 



2. Docs Outline
Staging website doubles as a task list



3. Contributor Experience
Getting people to write docs is already hard.

Don’t make it harder



3. Contributor Experience
README.md and CONTRIBUTING.md

● Docs about docs!
● Include a “Quick Start” at the top for minimal friction
● Add further documentation of website details and best practices farther down in 

CONTRIBUTING.md



3. Contributor Experience
One line preview command

Just git clone and…

Open in 
browser for 
live preview



3. Contributor Experience
Let CI do the nitpicking

● Painful code reviews will turn away contributors and reviewers
● Automate:

○ Pull request title format
○ Jira linking
○ License header checks
○ Spelling
○ Formatting



4. CI
Of course your project has it, why not its website?

● Use the same CI platform as your project
● Reuse checks and templates from your project:

○ PR title check
○ PR template
○ License check

● Make sure error messages are helpful to new contributors
○ CI output can link to relevant parts of CONTRIBUTING.md for help 

resolving issues.



4.1. CI: Static Checks

● License checks for any file format without extra dependencies
● Features:

○ Maintained by the Apache Skywalking project
○ Comes with a plug and play GitHub action
○ Flexible configuration

License headers: Apache Skywalking-Eyes



4.1. CI: Static Checks

● Never get a “Fix Typo In…” pull request again!
● Features:

○ Import existing dictionaries of jargon
○ Configurable dictionary to add your project’s custom 

jargon
○ Inline ignores when you need even more jargon

Spelling: cspell



4.1. CI: Static Checks

● Make all pages use the same markdown style
● Features:

○ Tons of configurable rules to lock in your markdown format
○ Catch rendering gotchas you didn’t know existed
○ Enforce proper capitalization of words

■ It’s “Datanode”, not “datanode” or “DataNode”
■ Optionally ignored in markdown code blocks

Markdown formatting: markdownlint



4.2. CI: Build

● Docker image with all dependencies built in is cached in GitHub actions
● pnpm build runs in a container from this image
● Resulting website is saved as an artifact for the next stage

Environment: Docker + PNPM

+



4.2. CI: Build

● Docusaurus supports plugging into the build at various stages
● Use cases:

○ Enforce restrictions on front matter keys with json schema
○ Check format of all URLs when generating the sitemap

Build Hooks: Docusaurus and friends



4.2. CI: Run

● Assume Docusaurus is handling UI functionality correctly
● Just make sure the site can be run and the homepage returns 200

Liveness: curl



4.3. CI: Publish

● .asf.yaml: Branch specific configuration file for ASF related tasks
○ Jira auto linking
○ Repo metadata
○ Website publishing

● ASF supports staging sites:
○ Official site: ozone.apache.org
○ New WIP website: ozone-site-v2.staged.apache.org

How?



4.3. CI: Publish

1. GitHub action runs on each commit to the website branch
2. The action pushes a commit to the build branch
3. The build branch’s .asf.yaml configuration indicates the build should be 

published

Steps



5. The Hard Stuff

● Docusaurus does not provide a template for the homepage
● Requires web dev and graphic design knowledge not present in the Ozone 

community
● Ideas to help:

○ Borrowing from other Apache websites
○ Creating a mock-up before trying to write code

Homepage



5. The Hard Stuff

● Ozone community maintains Mandarin translations for the documentation
● Docusaurus supports multiple translations, but we must maintain them
● How to track what is missing or stale?

Translations



5. The Hard Stuff

● Docs skeleton contains 200+ pages of content that must be filled in
● Devs are busy and progress is slow
● Ideas to help:

○ Lead by example
○ Distribute the load
○ Ask SMEs directly
○ Ask that all future docs contributions go to new and current website

Actually writing docs…



The End
Go fix your website

https://github.com/errose28
erose@apache.org

https://issues.apache.org/jira/browse/HDDS-9225
https://github.com/apache/ozone-site/tree/HDDS-9225-website-v2

https://github.com/errose28
mailto:erose@apache.org
https://issues.apache.org/jira/browse/HDDS-9225
https://github.com/apache/ozone-site/tree/HDDS-9225-website-v2

