
 © 2018 kippdata informationstechnologie GmbH 1 Performance Troubleshooting using Java Thread Dumps

Performance Troubleshooting
using Java Thread Dumps

Rainer Jung
kippdata informationstechnolgie GmbH

 © 2018 kippdata informationstechnologie GmbH 2 Performance Troubleshooting using Java Thread Dumps

Introduction

 Rainer Jung, kippdata GmbH
 Committer and PMC member for Apache Tomcat,

the Apache httpd server and Apache JMeter
 Apache Software Foundation (ASF) member
 Doing lots of performance analysis
 Providing support for Apache Tomcat, Apache httpd

and other web infrastructure

 © 2018 kippdata informationstechnologie GmbH 3 Performance Troubleshooting using Java Thread Dumps

Topics

 Which problem do we want to solve?
 What is a Java thread dump and how does it help?
 How does one create thread dumps?
 Real-world examples!

 © 2018 kippdata informationstechnologie GmbH 4 Performance Troubleshooting using Java Thread Dumps

Note

 This talk is only about server applications written in
Java

 Why is the talk in the Apache Tomcat track?
Because we from the Tomcat project get often asked
about Tomcat performance problems and they
always turn out as application performance
problems

 I want to introduce you into a useful methodology

 © 2018 kippdata informationstechnologie GmbH 5 Performance Troubleshooting using Java Thread Dumps

Which problem do we want to solve?

 We are interested in solving performance problems
 Response times are much too high

and/or
 Application throughput is not big enough

 For throughput driven applications (like most online
applications) such problems typically result in

 Total unavailability of the application due to backlog
 Our goal is: find the root cause!

 © 2018 kippdata informationstechnologie GmbH 6 Performance Troubleshooting using Java Thread Dumps

Methodology Pros

 Out methodology will have the following nice
features:

 It works for any Java application
 It can be used even in production
 It typically does not need complex preparations
 It does not need third-party software
 The application does not need any adjustments

 © 2018 kippdata informationstechnologie GmbH 7 Performance Troubleshooting using Java Thread Dumps

Methodology Cons

 Out methodology has the following limitations:
 It only works for serious performance problems. You

can't use it to improve your application performance by
10%.

 You always need to first exclude Java memory use and
garbage collection behavior as a possible root cause.

 We don't have a GUI
 Seriously: modern APM tools are very powerful. Our approach

works ad-hoc. No preparation, fast turnaround.

 © 2018 kippdata informationstechnologie GmbH 8 Performance Troubleshooting using Java Thread Dumps

Most common root causes for performance problems

 The most common root causes for performance
problems are

 Overloaded back end systems – the application waits for
their response (database, middleware, web services, ...)

 Locking problems – parts of application code are not
allowed to execute in parallel

 Bad memory sizing, memory leaks, or garbage collection
configuration

 Wrong sizing of software components (pool, caches,
timeouts)

 © 2018 kippdata informationstechnologie GmbH 9 Performance Troubleshooting using Java Thread Dumps

Other common root causes for performance problems

 Other common root causes for performance
problems are

 Resource constraints: CPU, OS memory, I/O, network
 These were once well understood and not a frequent problem
 Due to virtualisation they are back on the table as root causes

 More precisely: virtualisation with thin provisioning, or should we say
resource over-commitment …

 But that's another topic

 © 2018 kippdata informationstechnologie GmbH 10 Performance Troubleshooting using Java Thread Dumps

What is a Java thread dump and how does it help?

 First idea: what if we could trace everything that
application code does?

 Doing this naively will slow down the application so
much, that we wont be able to distinguish this slowness
from the performance problem we need to analyze

 Doing it less naively will quickly lead to a demand in
additional tool infrastructure and complex tool
knowledge. In many cases also adjustments to the
application (byte code instrumentation).

 © 2018 kippdata informationstechnologie GmbH 11 Performance Troubleshooting using Java Thread Dumps

What is a Java thread dump and how does it help?

 Alternative idea: can we find out in which parts of
the code the application runs for a long time or very
frequently?

 We are not really interested in fast and rare things.
 If the performance problems are serious, it would

suffice to check every now and then, in which code
the application is at the moment of the check?

 © 2018 kippdata informationstechnologie GmbH 12 Performance Troubleshooting using Java Thread Dumps

What is a Java thread dump and how does it help?

 What is a Java thread dump?
 A Java thread dump is a snapshot of the code executing

at the moment the thread dump is taken
 The snapshot is textual
 It shows the execution stack of every thread in the

process
 This execution stack has the same format that you might

know from the logging of an exception or throwable in a
log file

 Let's ´hava a look at an example!

 © 2018 kippdata informationstechnologie GmbH 13 Performance Troubleshooting using Java Thread Dumps

What is a Java thread dump and how does it help?

 So how does a Java thread dump help?
 When we have a performance problem, typically many

parallel running threads gather in the same code places
(the slow code places).

 So look for thread stacks in the thread dump that occur
many times in the same dump.

 Start with the most frequent ones
 But exclude threads in “idle” stacks (short stacks containing

none of your custom code)

 © 2018 kippdata informationstechnologie GmbH 14 Performance Troubleshooting using Java Thread Dumps

Pros of Java thread dumps?

 Pros of Java thread dumps
 All of the Pros we were looking for, plus
 Any Java virtual machine provides Java thread dumps
 They are fast and do not really disturb the application
 They are textual and can be directly read and understood

by humans
 They can be aggregated by simple tools like scripts
 They contain locking information. You will see the

importance once we look at the real-world examples.

 © 2018 kippdata informationstechnologie GmbH 15 Performance Troubleshooting using Java Thread Dumps

Cons of Java thread dumps?

 Cons of Java thread dumps
 For complex applications under high load they can be

quite big (a few thousand lines)
 You should make more than one thread dump to double

check, whether they show consistently the same
problem. Remember they are only a snapshot in time. I
suggest taking 3 dumps with pauses of 3 seconds.

 They contain no data. You can see where the code is, but
not on which data it operates. But often you can see the
type of data by code class and method names.

 © 2018 kippdata informationstechnologie GmbH 16 Performance Troubleshooting using Java Thread Dumps

Disclaimer

 This is not a poor mans tracing. Do not dump every
few milliseconds!

 There are two “dumps” in the Java world. Thread
dumps, also known as stack dumps, that's the ones
we are interested in. And: memory dumps, also
known as heap dumps. These are totally different.
When you request a thread dump from ops people
make sure you tell them you do not want a memory
dump.

 © 2018 kippdata informationstechnologie GmbH 17 Performance Troubleshooting using Java Thread Dumps

How does one create thread dumps?

 How does one create thread dumps?
 First and best method, but available only on Linux/Unix:

send a QUIT signal to the process: “kill -QUIT 12345”
 This does NOT terminate the process. The JVM has a signal

handler for QUIT registered. When it receives the QUIT signal,
it writes a thread dump to STDOUT.

 You do not get the thread dump back from the kill.
 You need to redirect STDOUT to some file in the application start script

to actually get access to the written dump.
 Example: Tomcat redirects to logs/catalina.out.

 © 2018 kippdata informationstechnologie GmbH 18 Performance Troubleshooting using Java Thread Dumps

How does one create thread dumps?

 How does one create thread dumps?
 Second method using the jstack command from a JDK

installation: “/path/to/java/bin/jstack 12345”
 The dump is send from the Java process to the jstack

command, so you get it in the window where you execute
jstack. So you should redirect its output:
“jstack 12345 > jstack.out”

 Output for older Java versions not as good as “kill -QUIT”,
especially for Windows

 Third method using jvisualvm from a JDK installation

 © 2018 kippdata informationstechnologie GmbH 19 Performance Troubleshooting using Java Thread Dumps

How does one create thread dumps?

 How does one create thread dumps?
 Other methods might be available depending on the

application. For example:
 Tomcat Windows task bar icon has a context command to

create a thread dump
 There is a Java API to get all thread stacks, so one can write

Java code running inside the app that generates the dump

 Not of use are methods, that only allow to look at
stacks for individual threads!

 These are too inefficient.

 © 2018 kippdata informationstechnologie GmbH 20 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Let's have a look at real-world examples.
 I have extracted frequent stacks from thread dumps

taken during performance problems
 I have removed some lines by “...” to achieve a more

dense stack feasible for a presentation screen

 © 2018 kippdata informationstechnologie GmbH 21 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 What is this?
at java.net.SocketInputStream.socketRead0(Native Method)
...
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:687)
at sun.net.www.http.HttpClient.parseHTTP(HttpClient.java:632)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream
(HttpURLConnection.java:1000)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:373)
at com.provider.xyz.util.UserLogin.sendMessageToCallgate
(UserLogin.java:381)
at com.provider.xyz.util.UserLogin.transferClientData
(UserLogin.java:284)
...
at WICKET_com.provider.xyz.util.UserLogin$$EnhancerByCGLIB$
$b620ce.loginUser(<generated>)
at com.provider.xyz.panels.account.PanelLogin$3.onSubmit
(PanelLogin.java:231)

 © 2018 kippdata informationstechnologie GmbH 22 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Explanation
at java.net.SocketInputStream.socketRead0(Native Method)

Socket = network communication, here reading
...
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:687)

Protocol is HTTP, we are the client reading the response from a remote
HTTP server

...
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:373)

We are actually waiting for the response code (first line)
at com.provider.xyz.util.UserLogin.sendMessageToCallgate
(UserLogin.java:381)

The remote system seems to be known as “Callgate”
at com.provider.xyz.util.UserLogin.transferClientData
(UserLogin.java:284)

The action seems to be triggered by a user login

 So: the HTTP calls to callgate during user logins are slow

 © 2018 kippdata informationstechnologie GmbH 23 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 What is this?
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java:129)
at java.net.SocketInputStream.read(SocketInputStream.java:182)
at net.xyz.util.InputStreamUtils.readLine(InputStreamUtils.java:74)
at net.xyz.rpc.RpcBase.readResponseHead(RpcBase.java:746)
...
at net.xyz.rpc.RpcService.invoke2008(RpcService.java:799)
at net.xyz.rpc.RpcService$$FastClassByCGLIB$$cc7d91e6.invoke(<generated>)
at net.sf.cglib.proxy.MethodProxy.invoke(MethodProxy.java:149)
at org.springframework.aop.framework.Cglib2AopProxy$CglibMethodInvocation.
invokeJoinpoint(Cglib2AopProxy.java:700)
...
at net.xyz.rpc.RpcServiceSkulD$$EnhancerByCGLIB$
$93e8acf0.invoke2008(<generated>)
at com.provider.xyz.rpc.BasicWrapper.invoke(BasicWrapper.java:183)
at com.provider.xyz.rpc.MBoxDWrapper.getFolderTree
(MBoxDWrapper.java:155)
at com.provider.xyz.util.BackendUtil.helpGetFolderList
(BackendUtil.java:503)
at com.provider.xyz.util.BackendUtil.getFolderList
(BackendUtil.java:438)

 © 2018 kippdata informationstechnologie GmbH 24 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Explanation
at java.net.SocketInputStream.socketRead0(Native Method)

again Socket = network communication, here reading
...
at net.xyz.rpc.RpcBase.readResponseHead(RpcBase.java:746)

No sign of HTTP, instead someone has named this protocol RPC
(remote procedure call), we are reading (waiting for) the response head

...
at com.provider.xyz.rpc.MBoxDWrapper.getFolderTree
(MBoxDWrapper.java:155)
at com.provider.xyz.util.BackendUtil.helpGetFolderList
(BackendUtil.java:503)
at com.provider.xyz.util.BackendUtil.getFolderList
(BackendUtil.java:438)

The action seems to be triggered by a the need for some mail box
(mbox) folder list.

 So: the RPC calls retrieving the mbox folder list are slow

 © 2018 kippdata informationstechnologie GmbH 25 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 What is this?
at java.net.PlainSocketImpl.socketConnect(Native Method)

...
at java.net.Socket.connect(Socket.java:469)
...
at sun.net.www.protocol.http.HttpURLConnection.plainConnect
(HttpURLConnection.java:729)
at sun.net.www.protocol.http.HttpURLConnection.connect
(HttpURLConnection.java:654)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream
(HttpURLConnection.java:977)
at java.net.HttpURLConnection.getResponseCode
(HttpURLConnection.java:373)
at com.provider.xyz.util.Utilities.isURLAccessible
(Utilities.java:1011)

 © 2018 kippdata informationstechnologie GmbH 26 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Explanation
at java.net.PlainSocketImpl.socketConnect(Native Method)

again Socket = network communication, but now not reading, instead
connect. How long does a connect normally take? What does it mean,
if we find it in our snapshot?

...
at sun.net.www.protocol.http.HttpURLConnection.plainConnect
(HttpURLConnection.java:729)

Protocol is HTTP, we are the client connecting to a remote HTTP server
...
at java.net.HttpURLConnection.getResponseCode
(HttpURLConnection.java:373)

We are actually waiting for the response code (first line)
at com.provider.xyz.util.Utilities.isURLAccessible
(Utilities.java:1011)

The action is triggered by a method named “isURLAccessible”

 So: an accessibility check for a URL sometimes hangs in a
socket connect.

 © 2018 kippdata informationstechnologie GmbH 27 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 More Explanation
 Discussion with developers reveals: during user login

they wanted to communicate with other social networks.
 They observed some of the remote servers where not

always available and implemented an additional
availability check

 BUT:
 They did it synchronously during every login
 Optimization: do it independent of login in different threads

every N seconds, cache results and use them during logins

 © 2018 kippdata informationstechnologie GmbH 28 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 What is this?

at de.acme.lib.client.connect.RemoteLogin.callServerInThread(RemoteLogin.java:867)
- waiting to lock <0x00002aab2a245410> (a de.acme.to30.service.api.To30RemoteLogin)
at de.acme.lib.client.connect.RemoteLogin.callServer(RemoteLogin.java:804)
at com.ticketing.framework.client.business.bridge.StatelessConnector.sendRequest\
 (StatelessConnector.java:58)
at com.ticketing.framework.client.business.bridge.DatasourceBridgeConnector.load\
 (DatasourceBridgeConnector.java:30)
at com.ticketing.framework.business.datasource.DatasourcePipe.load\
 (DatasourcePipe.java:30)
at com.ticketing.framework.business.datasource.CachedDatasource.load\
 (CachedDatasource.java:56)

 © 2018 kippdata informationstechnologie GmbH 29 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Partial explanation
at de.acme.lib.client.connect.RemoteLogin.callServerInThread(RemoteLogin.java:867)
- waiting to lock <0x00002aab2a245410> (a
de.acme.to30.service.api.To30RemoteLogin)

A class named RemoteLogin executes the method callServerInThread.
That method uses a mutual exclusion lock to prevent concurrent execution
of parts of its code.
Every thread showing the above “waiting to lock” line waits for some
other thread to free the lock before it can acquire it and proceed execution.
If this happens a lot, it results in a performance problem!
In this case it did happen a lot, dozens of threads showed this stack!

at de.acme.lib.client.connect.RemoteLogin.callServer(RemoteLogin.java:804)
at com.ticketing.framework.client.business.bridge.StatelessConnector.sendRequest\
 (StatelessConnector.java:58)
at com.ticketing.framework.client.business.bridge.DatasourceBridgeConnector.load\
 (DatasourceBridgeConnector.java:30)
at com.ticketing.framework.business.datasource.DatasourcePipe.load\
 (DatasourcePipe.java:30)
at com.ticketing.framework.business.datasource.CachedDatasource.load\
 (CachedDatasource.java:56)

 © 2018 kippdata informationstechnologie GmbH 30 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Remaining explanation
 Remember: waiting to lock <0x00002aab2a245410>
 Look at the below stack from three other threads

at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java:129)
...
- locked <0x00002aab18e56768> (a java.io.BufferedInputStream)
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:681)

So this thread waits for an HTTP response form a remote server ...
...
at de.acme.lib.client.connect.RemoteLogin.callServerInThread\
 (RemoteLogin.java:893)

- locked <0x00002aab2a245410> (a
de.acme.to30.service.api.To30RemoteLogin)

… while it holds the lock and prevents other threads from also calling that
remote server

 © 2018 kippdata informationstechnologie GmbH 31 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Remaining Explanation
 Discussion with developers reveals: access to the back

end server was limited on purpose to shield the back end
from overload

 Why are only three threads allowed to access to back
end in parallel?

 Configuration error!
 That was the default setting supposed to be only used in development.
 Someone simply forgot to adjust for production.
 After this finding, they adjusted the value to 600 for production

 © 2018 kippdata informationstechnologie GmbH 32 Performance Troubleshooting using Java Thread Dumps

About locking

 Special topic locking
 Locking is important

 Needed to ensure correctness
 Not a performance problem if properly done

 Locking can get problematic
 If locked code is to big or more precisely takes to long to

execute
 Especially problematic: running remote calls while holding a lock

(database request, HTTP request etc.)
 If locked code is very hot, ie. is executed extremely often

 IMHO bad locking is the number one reason for local
performance problems

 © 2018 kippdata informationstechnologie GmbH 33 Performance Troubleshooting using Java Thread Dumps

About locking

 Locking in thread dumps
 Threads which are blocked while waiting for a lock can

be found by searching for “- waiting to lock”,
“- waiting on” and “- parking to wait”.

 Threads which hold a lock and prevent others to use the
same lock can be found by searching for “- locked”

 Depending on the lock details, sometimes the thread holding
the lock does not have this text on its stack. Then you might
find it by comparing class and method names with the ones
where the other threads are blocked

 Al of the lines contain the unique address of the lock
object

 © 2018 kippdata informationstechnologie GmbH 34 Performance Troubleshooting using Java Thread Dumps

Locks in thread dumps

 Example for a lock in a thread dump
 This thread already acquired a lock (owns the lock)

 Lock is of type (class name) „java.net.SocksSocketImpl“

 "http-28380-Processor2" daemon prio=10 tid=0x00968800 nid=0x1a
runnable ...

 java.lang.Thread.State: RUNNABLE
 at java.net.PlainSocketImpl.socketAccept(Native Method)
 at

java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)
 - locked <0xf4490718> (a java.net.SocksSocketImpl)
 at

java.net.ServerSocket.implAccept(ServerSocket.java:450)
 at java.net.ServerSocket.accept(ServerSocket.java:421)
 at java.lang.Thread.run(Thread.java:626)
 ...

 "http-28380-Processor2" daemon prio=10 tid=0x00968800 nid=0x1a
runnable ...

 java.lang.Thread.State: RUNNABLE
 at java.net.PlainSocketImpl.socketAccept(Native Method)
 at

java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)
 - locked <0xf4490718> (a java.net.SocksSocketImpl)
 at

java.net.ServerSocket.implAccept(ServerSocket.java:450)
 at java.net.ServerSocket.accept(ServerSocket.java:421)
 at java.lang.Thread.run(Thread.java:626)
 ...

 © 2018 kippdata informationstechnologie GmbH 35 Performance Troubleshooting using Java Thread Dumps

Locks in thread dumps

 Example for a lock in a thread dump
 This thread waits for a lock

 of type (class)
„org.apache.tomcat.util.threads.ThreadPool$ControlRunnable“

 "http-28380-Processor1" daemon prio=10 tid=0x00969800 nid=0x19
in Object.wait()

 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)

- waiting on <0xf4202130> (a org.apache.tomcat.util.
threads.ThreadPool$ControlRunnable)

 at java.lang.Object.wait(Object.java:484)
 at

org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run

(ThreadPool.java:687)

 ...

 "http-28380-Processor1" daemon prio=10 tid=0x00969800 nid=0x19
in Object.wait()

 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)

- waiting on <0xf4202130> (a org.apache.tomcat.util.
threads.ThreadPool$ControlRunnable)

 at java.lang.Object.wait(Object.java:484)
 at

org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run

(ThreadPool.java:687)

 ...

 © 2018 kippdata informationstechnologie GmbH 36 Performance Troubleshooting using Java Thread Dumps

Non-problematic lock waits

 Lock waits sometimes simply indicates idleness
 An idle thread in a thread pool is typically blocked while

waiting for something to do by letting it wait for a lock
 Typical stack pattern for such non-problematic lock waits:

 Thread stack is very short (about 10 lines)
 Thread stack does only contain classes from the JVM, no

business or framework code
 Don't panic: you will quickly get used to these

 © 2018 kippdata informationstechnologie GmbH 37 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 What is this?
 I found many threads in this stack

at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0xHEXADDR> (a
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)

So the threads wait for a lock ...
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:158)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await\

 (AbsractQueuedSynchronizer.java:1925
at java.util.concurrent.LinkedBlockingQueue.put\
 (LinkedBlockingQueue.java:254)

… while trying to add something to a queue ...
at org.jboss.cache.RegionImpl.registerEvictionEvent(RegionImpl.java:249)

… called by a JBoss cache class RegionImpl, method registerEvictionEvent

 I'm not a JBoss cache expert, but ...

 © 2018 kippdata informationstechnologie GmbH 38 Performance Troubleshooting using Java Thread Dumps

Real-world examples

 Searching the logs I found 62646 log lines like the
following:

 org.jboss.cache.RegionImpl: putNodeEvent(): eviction node

event queue size is at 98% threshold value of
capacity: 200000 Region: /categories
You will need to reduce the wakeUpIntervalSeconds parameter.

 What happens often after 98% full? 100% full!
 How does a queue behave once it is full and I want to add

more items? The queue was a LinkedBlockingQueue. So: it
blocks. That's what we see.

 Either the queue is to small, or more likely the queued entries are
not processed quickly enough

 © 2018 kippdata informationstechnologie GmbH 39 Performance Troubleshooting using Java Thread Dumps

Real-world examples summary

 Real-world examples summary
 Looking at thread dumps we can interprete what the code

does without knowing the code in advance
 Most class names and method names are quite specific
 To analyze performance problems, the most important

part of the stack is the top 5-10 lines

 © 2018 kippdata informationstechnologie GmbH 40 Performance Troubleshooting using Java Thread Dumps

Thread dump analysis methodology

 Methodology for analyzing thread dumps
 Take a few dumps instead of just one, they are cheap
 Concentrate on stacks that occur for many threads

 One can write a simple text processing script to produce some
statitics (most frequent stack, second frequent stack , …)

 Concentrate on the top 5-10 lines of the stacks
 Ignore the “idle thread” stacks
 Look for network communication and lock waits

 © 2018 kippdata informationstechnologie GmbH 41 Performance Troubleshooting using Java Thread Dumps

What's next?

 What's next?
 Create a few thread dumps of your favorite application

right now
 Dare to do it even in production

 Look at them and familiarize yourself with the contents,
even when there is no performance problem right now

 Share your dumps and findings. Thread dumps enable
joint analysis between devs and ops.

 Include taking thread dumps in the stop method of your
shutdown scripts. Thus you'll get good post-mortem
information in case of emergency restarts.

 © 2018 kippdata informationstechnologie GmbH 42 Performance Troubleshooting using Java Thread Dumps

Thread dumps and Apache Tomcat

 Thread dumps and Apache Tomcat
 Everything we said of course applies to applications

running in Tomcat
 There's two nice additions:

 Getting a thread dump via browser from the tomcat manager
servlet with the URI /manager/text/threaddump

 A bit more expensive than “kill -QUIT” and “jstack”, but still very useful in
case of mergency

 The StuckThreadDetectionvalve: automatically log threads stacks
whenever a request takes longer to process than a configured
threshold

 Demo

 © 2018 kippdata informationstechnologie GmbH 43 Performance Troubleshooting using Java Thread Dumps

Questions?

 Hopefully time for questions ...
 … or send them to rainer.jung@kippdata.de

	Titel
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

