Distributed Deep Learning Inference

using Apache MXNet* and Apache Spark

Naveen Swamy

Amazon Al

Outline

* Review of Deep Learning

« Apache MXNet Framework

 Distributed Inference using MXNet and Spark

Deep Learning

* Originally inspired by our biological
neural systems.

» A System that learns important
features from experience.

« Layers of Neurons learning concepts.

* Deep learning != deep understanding

Credit:

Output
(object identity)

3rd hidden layer
(object parts)

2"d hidden layer
(corners & contours)

15t hidden layer
(edges)

Input layer
(Raw pixels)

http://www.deeplearningbook.org/

Algorithmic Advances
(Faster Learning)

Abundance of Data High Performance Compute

(Deeper Networks) GPUs
(Faster Experiments)

DEEP LEARNING

Bigger and Better Models = Better Al Products

Why does Deep Learning matter?

() amazon alexa

B8 RO

. 3 4 . 7 v S h
“Alexa, who was President when 5 - & S g h * UFN 4 La”tlh 1
)

2

Barack Obama was nine?” == - B - B o L | . ~ Lal
L e - P : - ’ el |

W
/)

“Alexa, what's the weather?”

e

Health care
Autonomous

Vehicles Solve Intelligence ???
".- a:ﬁvazor; ‘ « "‘
. - ~—"PrimeAir =
- .-.&"_ s g r.; § 15 ’?lw“i
- -|h = == S AlphaGo Zero

Personal Assistants

Starting fromseratch

Deep Learning & Al, Limitations

DL Limitations:

Artificial Intelligence

Requires lots of data and
compute power.

Machine Learning

Cannot detect Inherent bias in

data - Transparency.

Deep
Learning

Uninterpretable Results.

Deep Learning Training

. forward

= -

AN
ba.ckwa rd
labels
data

 Pass data through the network - forward pass forward pass
wT =05

» Define an objective — Loss function

» Send the error back — backward pass

backward pass

Model: Output of Training a neural network

Deep Learning Inference

— forward
D model‘
O
-‘

* Real time Inference: Tasks that require immediate result.

« Batch Inference: Tasks where you need to run on a large data sets.
o Pre-computations are necessary - Recommender Systems.

o Backfilling with state-of-the art models.

o Testing new models on historic data.

Types of Learning

 Supervised Learning — Uses labeled training data learning to
associate input data to output.

Example: Image classification, Speech Recognition, Machine translation

« Unsupervised Learning - Learns patterns from Unlabeled data.
Example: Clustering, Association discovery.

Clustered data

 Active Learning — Semi-supervised, human in the midc

* Reinforcement Learning - learn from environment, u
feedback.

|
N = o = N w & u o
N - o = N w » u o

3 -2 -10 1 2 3 4 5 6 -3 -2-10 1 2 3 4 5 6
z, z,

Outline

« Apache MXNet Framework

 Distributed Inference using MXNet and Spark

Why MXNet

]

jagsiaie sy

Programmable Portable
Simple Syntax Highly efficient models
Imperative/Declarative for Mobile and IOT
Multiple languages

/ @ 6’ GLUON

ONNX Support Easily and quickly build high
Open Source PP performance models with

Incubating at Apache Imperative APls

High Performance
Near linear scaling across
hundreds of GPUs

MXNet — NDArray & Symbol

* NDArray- Imperative Tensor Operations that work on both CPU and
GPUs.

« Symbol APIs - similar to NDArray but adopts declarative programming
for optimization.

Variable('A')
Variable('B')
B * A

compiles the function
compile(D)

A
B
C
D = C + Constant(1)
#
f
d = f(A=np.ones(10), B=np.ones(10)*2)

Symbolic Program Computation Graph

MXNet - Module

High level APIs to work with Symbol

data mx.sym.Variable('data')

fcl mx.sym.FullyConnected(data, name='fcl', num_hidden=128)
1) Create Graph actl = mx.sym.Activation(fcl, name='relul', act_type="relu")

fc2 mx.sym.FullyConnected{actl, name='fc2', num_hidden=18)

out mx.sym.SoftmaxOutput(fc2, name = 'softmax')

mod = mx.mod.Module(out) # create a module by given a Symbol

2) B|nd >>> mod.bind(data_shapes=nd_iter.provide_data,
o> label_shapes=nd_iter.provide_label) # create memory by given input shapes
>>> mod.init_params() # initial parameters with the default random initializer

3) Pass data

>>> mod.fit(nd_iter, num_epoch=1@, ...) # train
>>> mod.predict{new_nd_iter) # predict on new data

Outline

 Distributed Inference using MXNet and Spark

Distributed Inference
Challenges

‘ High Performance DL framework

- Similar to large scale data i
processing systems ‘ Distributed Cluster

Apache Spark: ‘ Resource Management

‘ Job Management
« Multiple Cluster Managers
 Works well with MXNet. ‘ Efficient Partition of Data

« Integrates with Hadoop & big data tools. :
Deep Learning Setup

MXNet + Spark for Inference.

* ImageNet trained ResNet-18 classifier.
* For demo, CIFAR-10 test dataset with 10K Images.
e PySpark on Amazon EMR, MXNet is also available in Scala.

 Inference on CPUs, can be extended to use GPUs.

Distributed Inference Pipeline

mapPartitions

initialize model only once

MXNet + Spark for Inference.

conf = SparkConf().setAppName("Distributed Inference using MXNet and Spark")
conf.set('spark.executor.cores', '1"')

n_partitions = len(keys)

rdd = sc.parallelize(keys, num_slices=n_partitions)

sc.broadcast(args['bucket'])
rdd = rdd.mapPartitions(lambda k : download_objects(args[bucket']

rdd = rdd.mapPartitions(load_images)
sc.broadcast(args)

O
3
~+
=3
M
o
=
<
M
q

rdd = rdd.mapPartitions{lambda iImgs: predict{imgs, args))

output = rdd.collect()

@
=]
~+
=3
™
o
X
1)
(o)
c
(g
o
q

class MXModel(object):
This is a singleton class that just holds the loaded mxnet model in the module object
We don't want to load the model for every inference when called from the map method

__metaclass__ = Singleton
model_loaded = False

mod = None
synsets = None

def __init__ (self, sym_url, param_url, synset_url, batch_size):
(s_fname, p_fname, synset_fname) = self.download_model_files(sym_url, param_url, synset_url)
MXModel.synsets = self.load_synset(synset_fname)
MXModel.mod = self.init_module(s_fname, p_fname, batch_size)
MXModel.model_loaded = True

f predict(img_batch, args):

Run predication on batch of images in 4-D numpy array format and return the top_5 probability along with their classes

mnn

import mxnet as mx
import numpy as np
logger.info('predict-args:%s’ %(args))

if not MXModel.model_loaded:
MXModel(args['sym_url'], args['param_url'], args['label_url'], args['batch'])

MXModel.mod. forward(Batch([mx.nd.array(img_batch)]))

Summary

* Overview of Deep Learning

o How Deep Learning works and Why Deep Learning is a big deal.

o Phases of Deep Learning @Xnet

o Types of Learning

 Apache MXNet - Efficient deep learning library APACHE

Spark’

o NDArray/Symbol/Module

« Apache MXNet and Spark for distributed Inference.

What's Next ? m

 Released simplified Scala Inference APIs (v1.2.0)
o Available on Maven :

« Working on Java APIs for Inference.

» Dataframe support is under consideration.

« MXNet community is fast evolving, join hands to democratize
Al.

https://mvnrepository.com/search?q=org.apache.mxnet

Resources/References

https://github.com/apache/incubator-mxnet
https://github.com/apache/incubator-mxnet
https://github.com/awslabs/deeplearning-emr
https://github.com/awslabs/deeplearning-emr
http://mxnet.apache.org/
http://www.deeplearningbook.org/
http://mxnet.incubator.apache.org/tutorials/python/predict_image.html
http://www.deeplearningbook.org/

Thank You

nswamy@apache.org

